第四章    程序设计语言和算法   

[      浏览次数:0 ]

 

案例28:环法自行车赛

 

        每年都举办的环法自行车赛中有以下情况:选手们在到终点前的路程常以大队伍方式前进,他们采取这策略是为了令自己不至于太落后,又出力适中。

 

        而最前方的选手在迎风时是最费力的,所以选择在前方是最差的策略。

 

         通常会发生这样的情况,大家起先都不愿意向前(共同背叛),这使得全体速度很慢,而后通常会有二或多位选手骑到前面,然后一段时间内互相交换最前方位置,以分担风的阻力(共同合作),使得全体的速度有所提升,而这时如果前方的其中一人试图一直保持前方位置(背叛),其他选手以及大队伍就会赶上(共同背叛)。
而通常的情况是,在最前面次数最多的选手(合作)通常会到最后被落后的选手赶上(背叛),因为后面的选手骑在前面选手的冲流之中,比较不费力。

 
          纳什均衡:假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己效用最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。

 

         非零和博弈是一种非合作下的博弈,博弈中各方的收益或损失的总和不是零值,它区别于零和博弈。在经济学研究中很有用。

 

          在非零和博弈中,对局各方不再是完全对立的,一个局中人的所得并不一定意味着其他局中人要遭受同样数量的损失。也就是说,博弈参与者之间不存在“你之得即我之失”这样一种简单的关系。其中隐含的一个意思是,参与者之间可能存在某种共同的利益,蕴涵博弈参与才“双赢”或者“多赢”这一博弈论中非常重要的理念。

 

          譬如,在恋爱中一方受伤的时候,对方并不是一定得到满足。也有可能双方一起能得精神的满足。也有可能双方一起受伤。通常,彼此精神的损益不是零和的。

 

          非零和博弈是一种非合作下的博弈,博弈中各方的收益或损失的总和不是零值,它区别于零和博弈。在经济学研究中很有用。 在这种状况时,自己的所得并不与他人的所失的大小相等,连自己的幸福也未必建立在他人的痛苦之上,即使伤害他人也可能“损人不利己”,所以博弈双方存在 “双赢”的可能,进而合作。

案例29:纳什均衡应用- ABCD男女理论

 

           由于男性的节制性偏向,导致其一般会降一格选择异性伙伴,因此实际社会中的典范完配是A男配B女,B男配C女,C男配D女,而A女与D男轮空。
 

          这个时候发生了两个确定性,A女(鲜花)确定D牛粪男是没人要的,而D男确定A女是追不到的。

 

           这种确定导致了两个最有可能的均衡策略:(1)A女如果在某种情形下选择了D男,则D男必定会接收
而D男去追A女则确定不会有成果。(2)反正D男也没人要则追A与不追A都一样不会有丧失,所以D男出于无聊或其他动机仍非常有可能追A女。

 

鲜花插牛粪

 

          为什么许多美女最后嫁给了让许多男性跌碎眼镜的男士,一些帅哥最后也好不到哪里去。如果我们用纳什均衡对这一现象进行剖析就有许多有趣的结论。纳什均衡的基础原理是,如果对方的策略是确定的,那么我的策略是最优的,而对方的策略是不肯定的,那么我的策略就很难是最优的。


           假定情景分析 在纳什本身的假定的情景下,如果有4优男看到4美女加一绝色美女,通常每男都假定其他男的可能会去排队追此绝色美女,故追到绝美的不确定性最强(而如果真的产生了多男追绝美,绝美的确也可能表示出相当的不肯定性与优胜感),让她很难有最优机遇,为防止“损了夫人又折兵”,每一男去追或者认真追的将会是普通美女,而普通美女与绝色美女比拟知道本身的差距,在有确定的寻求者的时候,会明白本身的清楚的逢迎策略,因此一般美女对比绝美的不肯定策略会更具吸引力,成果导致绝美轮空或无人敢认真追她。

                                                              

 

                                                                                                                                                  上一页                下一页