

PID-controllers

Job van Amerongen

Control Engineering, Dept. of Electrical Engineering University of Twente, Netherlands www.ce.utwente.nl/amn J.vanAmerongen@utwente.nl

Contents

- Why PID-control
- When PID control
- Tuning rules (Ziegler-Nichols)
- Examples

- Most widely applied type of controller
 - in industry probably 90% of all controllers
- Available as single controllers or implemented in computers
- Applicable to many processes
- Give a reasonable performance
- Fuzzy is often PID-like as well

- Stopping a car at a traffic light
- Cruise control system

Controlling a car

- Stopping a car at a traffic light
- Goal
 - Stop in time at the white line

Variables

Cruise Control

I-action necessary in order to deal with constant disturbance at input of process

Proportional Control

- Limited accuracy for systems higher than first order
- Limited bandwidth

- For a second order system:
 PD-control ≈ state feedback
- Comparable with a lead network

PD-control is applicable as long as the system behaves more or less like a second-order system

- For increased accuracy of type-0 systems
 - add an integration
- Comparable with a lag network
- If dead time is dominant:
 - pure I-control

- For systems of type-0 and a dominant second-order behaviour
 - PID-control
- Can be seen as a combination of a lead and a lag network

Types of systems

Control Engineering University of Twente

$$H(s) = \frac{K}{(s\tau_1 + 1)(s\tau_2 + 1)(s\tau_3 + 1)(...)}$$
PID typical S-curve

$$\mathcal{H}(s) = \frac{K e^{-sT_{d}}}{(s\tau_{1}+1)}$$

Border of instability

- After a few experiments we find
 - controller gain $K_u = 10$ brings the system at the border of instability
- A gain margin of 6 dB (a factor two) is a reasonable choice for the gain of a proportional controller

Response (GM = 6 dB)

Control Engineering University of Twente

Nyquist plot

PI-controller (parallel)

Control Engineering University of Twente

PI-controller (series)

Control Engineering University of Twente

Ziegler-Nichols rules

Oscillation period

Control Engineering University of Twente

Lecture 10 PID-controllers (20)

Control Engineering 2004/2005 © Job van Amerongen

PI-response

Lecture 10 PID-controllers (21)

Control Engineering 2004/2005 © Job van Amerongen

PID-controller (series)

Control Engineering University of Twente

with pole in origin

Ziegler-Nichols rules

PID-response

Disturbance rejection

Control Engineering 2004/2005 © Job van Amerongen

Tuning (τ and T_{d})

Border of instability

Control Engineering University of Twente

Lecture 10 PID-controllers (27)

Control Engineering 2004/2005 © Job van Amerongen

P-controller

Control Engineering 2004/2005 © Job van Amerongen

PI-controller

Control Engineering University of Twente

Control Engineering 2004/2005 © Job van Amerongen

PID-controller

Tuning (τ and T_{d})

Border of instability

Control Engineering University of Twente

Control Engineering 2004/2005 © Job van Amerongen

PI-control

Lecture 10 PID-controllers (34)

Control Engineering 2004/2005 © Job van Amerongen

Control Engineering 2004/2005 © Job van Amerongen

Optimal tuning

Control Engineering University of Twente

Optimal tuning

- PID-control suited for:
 - systems with an S-shaped response
 - systems with time delay
- Ziegler Nichols rules give 'reasonable' responses
 - (more suited for disturbance rejection than for tracking)
- Better tuning possible