

Non-linear systems

Job van Amerongen

Control Engineering, Dept. of Electrical Engineering University of Twente, Netherlands www.ce.utwente.nl/amn J.vanAmerongen@utwente.nl

- Various non-linearities
- reasons for the presence of nonlinear elements
- analysis in the phase plane
- analysis with describing functions

Examples of non linearities

- Friction in a mechanical system
- Saturation in an amplifier
- Switching elements, e.g. in thermostats
- operating-point-dependent parameters

Mechanical friction

Responses

- For a non-linear system the output can be zero for small input changes
- If the input signal increases with a factor α , the change in the output can be smaller or larger than α .

Friction characteristic

Forward path

Saturation

- Due to
 - maximum valve opening reached
 - output voltage of an amplifier limited by voltage of power supply
 - end stop

Saturation in amplifier

Control Engineering University of Twente

20-sim: Saturation_demo

Saturation in amplifier

Thermostat

- Temperature control in
 - buildings
 - boilers
 - refrigerators
 - cars (motor cooling)

relay: if x > 0, $y = y_{max}$ else y = 0

different control systems for heating and cooling

It makes no sense to damp the overshoot caused by the heating systems by switching on the air conditioning of the two

In practice only one of the two systems active

Thermostat with dead zone

Control Engineering University of Twente

It makes no sense to damp the overshoot caused by the heating systems by switching on the air conditioning In practice only one of the two systems active

Room control

20-sim: Thermostat_demo1

Room control

Relay plus dead zone

Control Engineering University of Twente

20-sim: Thermostat_demo2

Relay plus dead zone

Relay plus hysteresis

Relay plus hysteresis

Room thermostat

Process properties

Process properties

Non linearity

course unstable

Control Engineering University of Twente

In feedback path:

$\delta = -c_1 \dot{\psi} + c_3 \dot{\psi}^3$

In forward path:

Overview

Why non linearities?

- Sometimes it is difficult or too expensive to make a linear system
 - friction, saturation
- Sometimes wanted
 - safety (maximum relay)
- It is Cheap
 - relay is a cheap power amplifier
 e.g. thermostat, integrated with other functions: sensing, setpoint

Unwanted non linearities

- Behaviour of a good feedback system is only determined by the elements in the feedback path.
- High gain feedback can compensate for unwanted non-linearities, such as friction

Tacho feedback

Influence of non linearities with tacho feedback

Lecture 9 Non-linear Systems (32)

Control Engineering 2004/2005 © Job van Amerongen

- Feedback can considerably reduce the influence of non linearities
- Especially tacho feedback is an effective means to get rid of the deteriorating effects of static and coulomb friction
- Other possibility: inverse characteristic in series
 - much more sensitive for parameters

Compensation with inverse

Control Engineering University of Twente

Lecture 9 Non-linear Systems (34)

Phase plane analysis

Time response

Control Engineering University of Twente

Lecture 9 Non-linear Systems (36)

Control Engineering 2004/2005 © Job van Amerongen
Phase plane plot

Phase plane analysis

Relay output: ±M

K =1

 $\dot{x_1} = x_2$ $\dot{x_2} = -x_2 + M$ if $\varepsilon > 0$ ($x_1 < 0$) $\dot{x_2} = -x_2 - M$ if $\varepsilon < 0$ ($x_1 > 0$)

Isocline

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -x_2 + M \quad \text{if } \varepsilon > 0 \quad (x_1 < 0)$$

$$\dot{x_2} = -x_2 - M \quad \text{if } \varepsilon < 0 \quad (x_1 > 0) \quad \text{isocline}$$

$$\frac{dx_2}{dx_1} = \frac{\dot{x}_2}{\dot{x}_1} = \frac{-x_2 + M}{x_2} \quad (x_1 < 0)$$
$$\frac{dx_2}{dx_1} = \frac{\dot{x}_2}{\dot{x}_1} = \frac{-x_2 - M}{x_2} \quad (x_1 > 0)$$

$$\frac{dx_2}{dx_1} = -1 + \frac{M}{x_2} = m$$
$$\frac{dx_2}{dx_1} = -1 - \frac{M}{x_2} = m$$

Some values

$$m = -1 + \frac{M}{x_2} (x_1 < 0) \frac{x_2}{0} \frac{x_1 < 0}{\infty} \frac{x_1 > 0}{-\infty}$$

$$m = -1 - \frac{M}{x_2} (x_1 > 0) \frac{M}{0} 0 -2$$

$$-M -2 0$$

$$M/2 1 -3$$

$$-M/2 -3 1$$

Graphical

<i>X</i> ₂	$x_1 < 0$	<i>x</i> ₁ > 0
0	œ	-∞
М	0	-2
- <i>M</i>	-2	0
<i>M</i> /2	1	-3
- <i>M</i> /2	-3	1

Relay with dead zone

Switching line

Phaseplane_demo_relay_DZ_switchline

Switching line

Time response

Time optimal (bang bang)

K_d too large

Describing functions

Describing functions

Consider a NL-element with output signal y(t)and $x(t) = x_{max}sin(\omega t)$ as input signal

Fourier series:

$$y(t) \approx y_{1} \sin(\omega t + \varphi) = a_{1} \cos(\omega t) + b_{1} \sin(\omega t)$$

$$a_{1} = \frac{1}{\pi} \int_{0}^{2\pi} y \cos(\omega t) d(\omega t) \qquad y_{1} = \sqrt{a_{1}^{2} + b_{1}^{2}}$$

$$b_{1} = \frac{1}{\pi} \int_{0}^{2\pi} y \sin(\omega t) d(\omega t) \qquad \varphi = \arctan\left(\frac{a_{1}}{b_{1}}\right)$$

The describing function of the NL-element, N, is:

$$\mathcal{N} = |\mathcal{N}|e^{j\varphi} = \frac{Y_1}{x_{\max}}e^{j\varphi}$$

$$x_{\max} \sin(\omega t) \longrightarrow |N| e^{j\varphi} \xrightarrow{y_1} \sin(\omega t + \varphi)$$

Describing function of relay

$$y(t) = \mathcal{M} \text{ if } 0 < \omega t < \pi$$

$$y(t) = -\mathcal{M} \text{ if } \pi < \omega t < 2\pi$$

$$a_{1} = \frac{1}{\pi} \int_{0}^{2\pi} y \cos(\omega t) d(\omega t) =$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \mathcal{M} \cos(\omega t) d(\omega t) + \frac{1}{\pi} \int_{\pi}^{2\pi} -\mathcal{M} \cos(\omega t) d(\omega t)$$

$$a_{1} = \frac{1}{\pi} (\mathcal{M} \sin(\omega t)) \Big|_{0}^{\pi} + \frac{1}{\pi} (-\mathcal{M} \sin(\omega t)) \Big|_{\pi}^{2\pi} = 0$$

Control Engineering University of Twente

$$\varphi = \arctan\left(\frac{a_1}{b_1}\right)$$

For all radial symmetric, single valued non linearities, $a_1 = 0$.

This implies that $\varphi = 0$ (no phase lag)

Describing function of relay

Control Engineering University of Twente

$$y(t) = \mathcal{M} \text{ if } 0 < \omega t < \pi, \quad y(t) = -\mathcal{M} \text{ if } \pi < \omega t < 2\pi$$

$$b_1 = \frac{1}{\pi} \int_0^{2\pi} y \sin(\omega t) d(\omega t) =$$

$$= \frac{1}{\pi} \int_0^{\pi} \mathcal{M} \sin(\omega t) d(\omega t) + \frac{1}{\pi} \int_{\pi}^{2\pi} -\mathcal{M} \sin(\omega t) d(\omega t)$$

$$b_1 = \frac{1}{\pi} (-\mathcal{M} \cos(\omega t)) \Big|_0^{\pi} + \frac{1}{\pi} - (-\mathcal{M} \sin(\omega t)) \Big|_{\pi}^{2\pi} =$$

$$= \frac{1}{\pi} \Big[-(-\mathcal{M} - \mathcal{M}) \Big] + \frac{1}{\pi} \Big[-(-\mathcal{M} - \mathcal{M}) \Big] = \frac{4\mathcal{M}}{\pi}$$

Lecture 9 Non-linear Systems (57)

Describing function of relay

Describing function (linear gain)

Describing function (relay with dead zone)

Describing function (saturation)

Use of describing function

- Describing function should only be used for sinusoidal signals
 - systems on the border of instability

Close loop system (characteristic equation)

Example (gain)

Example (relay)

Limit_cycle_relay.em

Example (relay + dead zone)

Response (1)

Lecture 9 Non-linear Systems (69)

Control Engineering 2004/2005 © Job van Amerongen

Response(2)

Example (relay + dead zone)

demo

Limit_cycle_relay_dead_zone

Dead zone = 1 D = 0.8, 1.05, 1,1, 1.15

Conclusions

- Describing function gives an interpretation of non-linear systems
 - only at border of instability !
 - Only valid for more or less sinusoidal signals
 - (only first harmonic of Fourier series is taken into account)