

Design in the s-plane (root locus design)

Job van Amerongen

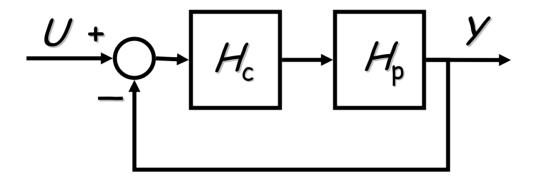
Control Engineering, Faculty of Electrical Engineering University of Twente, Netherlands www.ce.utwente.nl/amn J.vanAmerongen@utwente.nl

- Design of lag and lead networks
- tau-locus for a lead network
- systems with time delay
- non-minimum phase systems

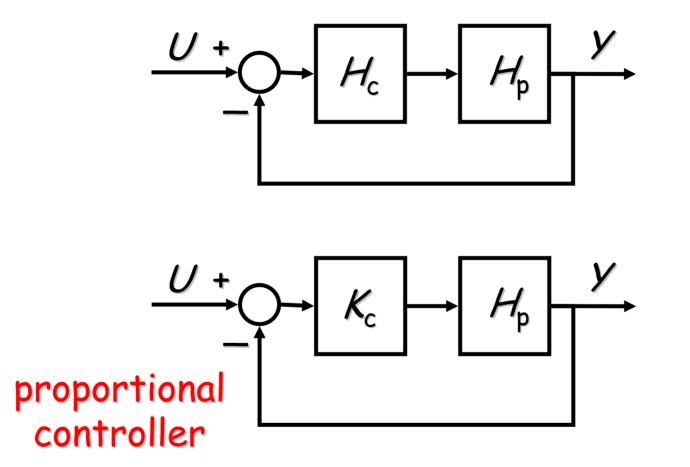
• Design a proportional controller such that the system has a damping ratio $z \approx 0.7$ (phase margin of 70 degrees) for the process:

$$H_p(s) = \frac{10}{s(s+1)(s+10)}$$

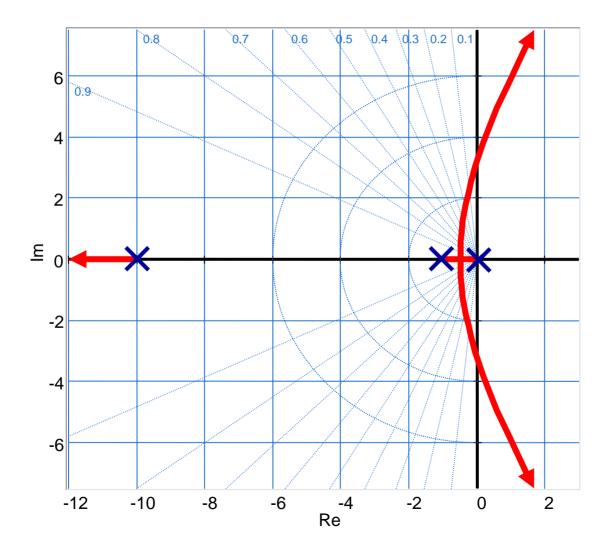
Control system



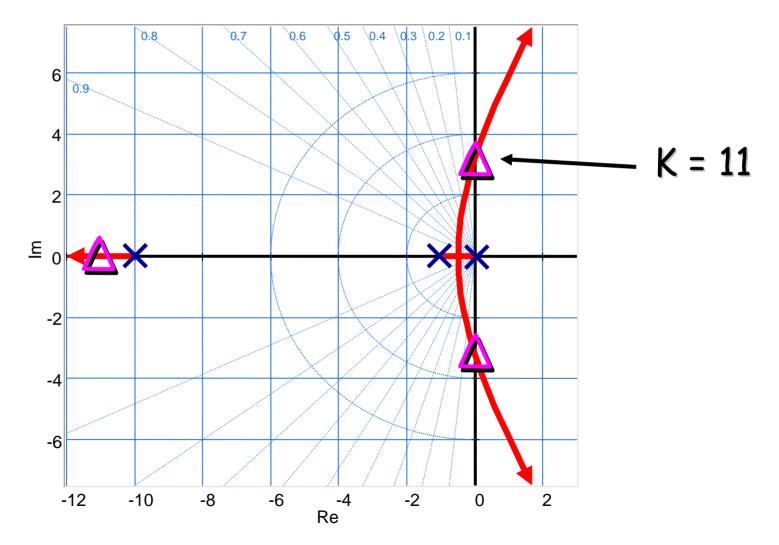
Control system



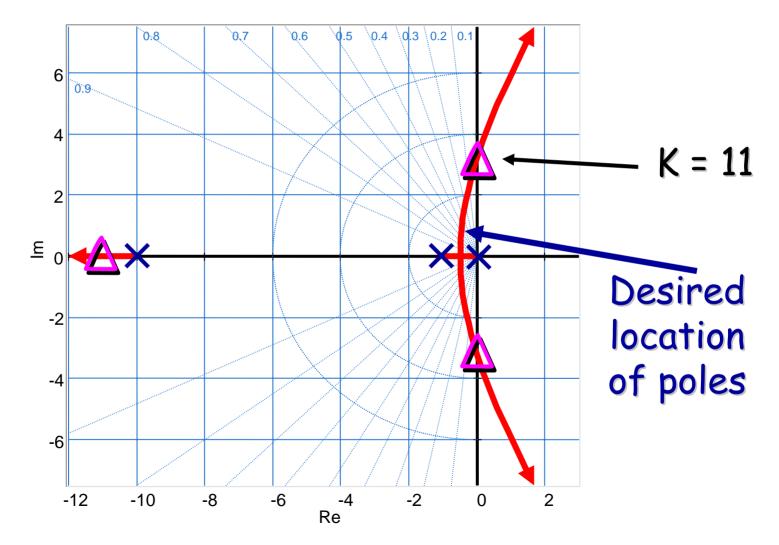
Root locus



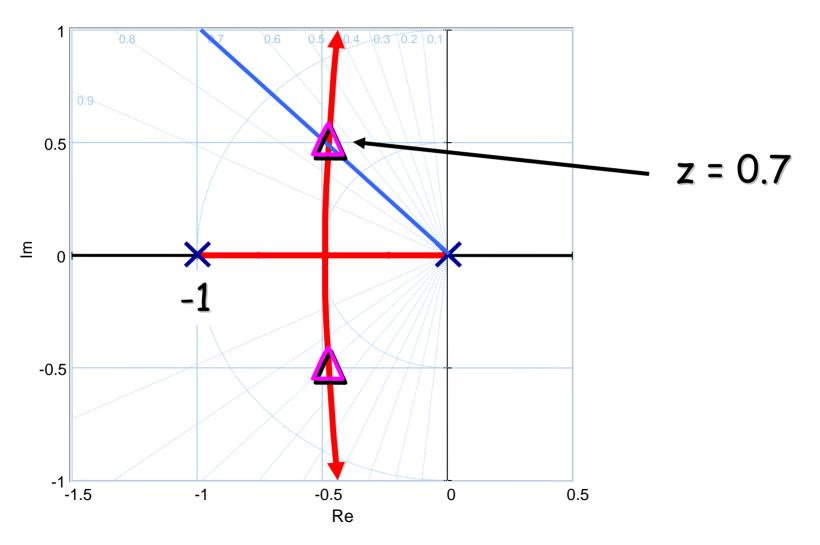
Root locus

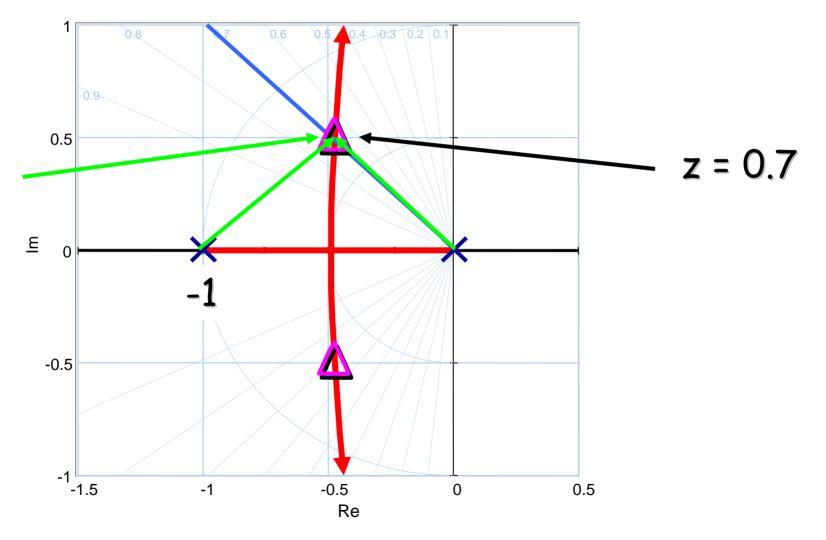


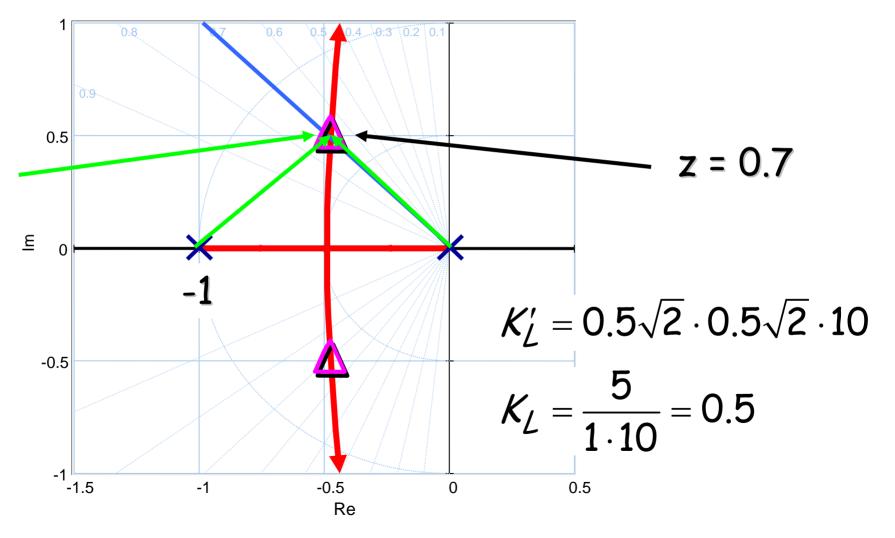
Root locus

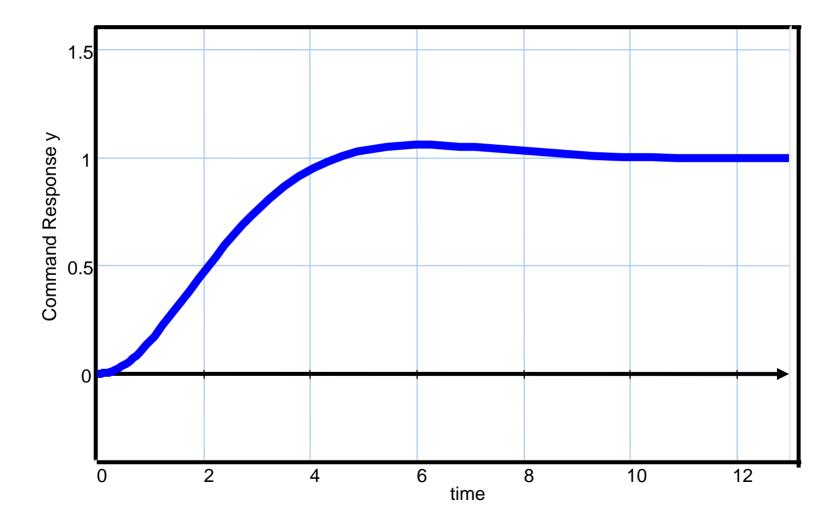


Design

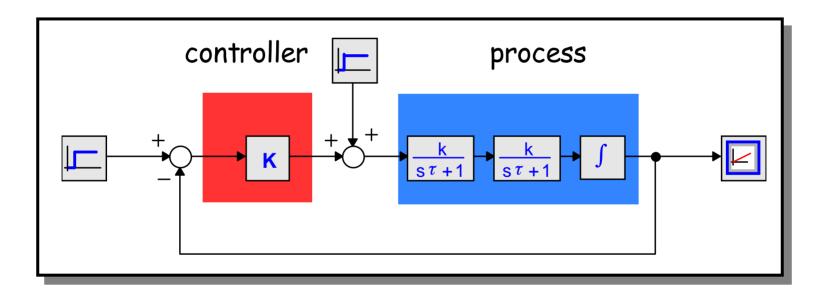




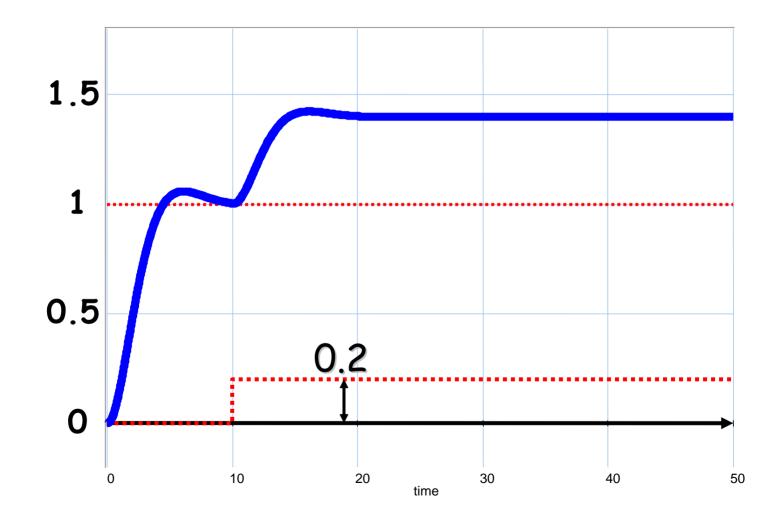




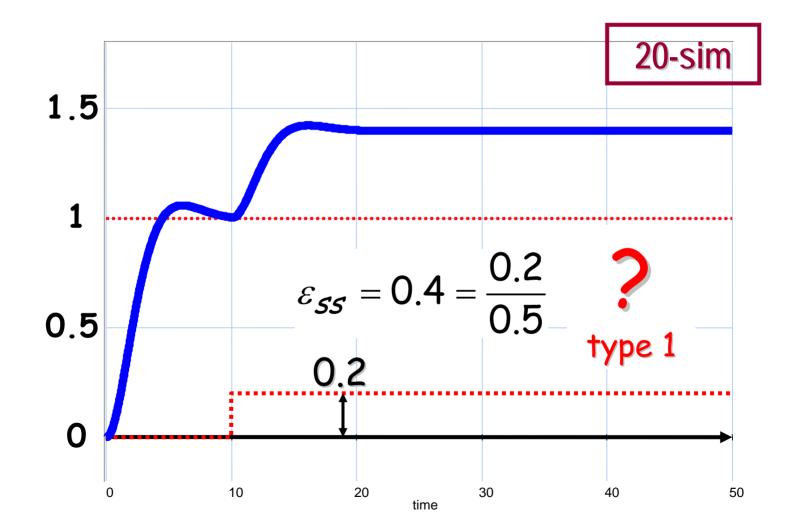
Consider the following system



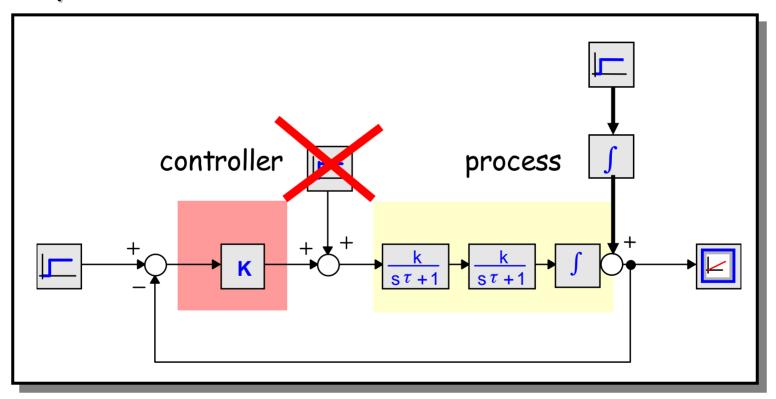
Response (K = 0.5)



Response (K = 0.5)

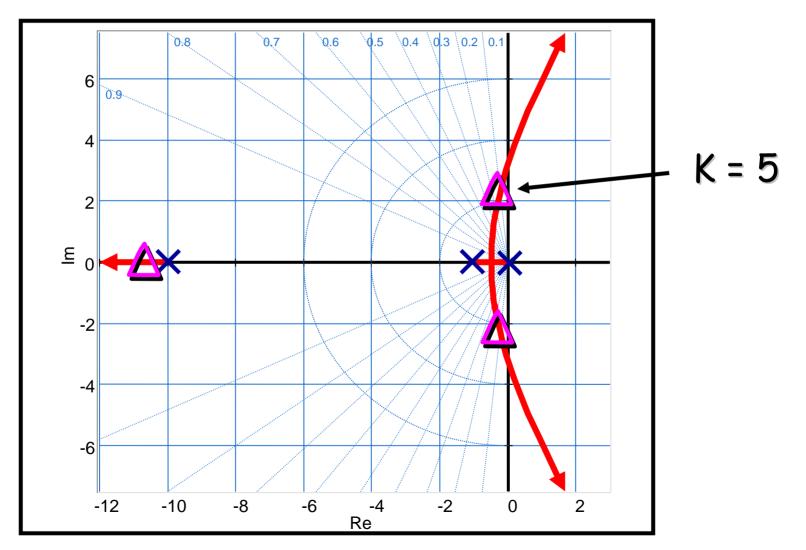


'Equivalent' disturbance



Root locus, K = 5

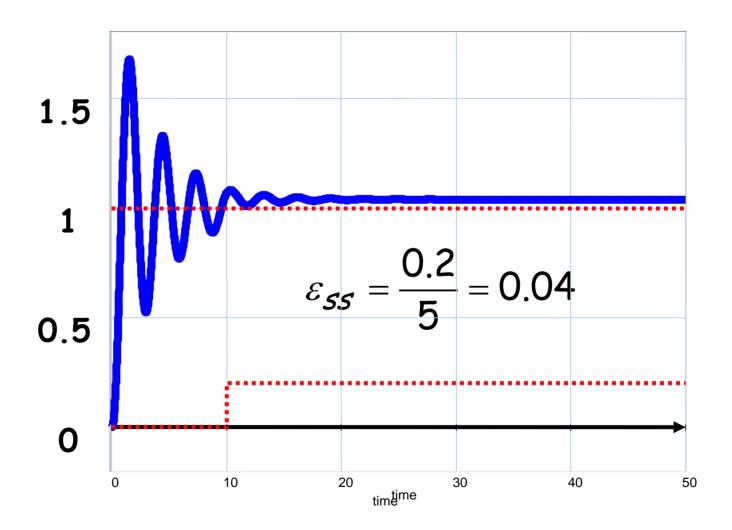
Control Engineering University of Twente



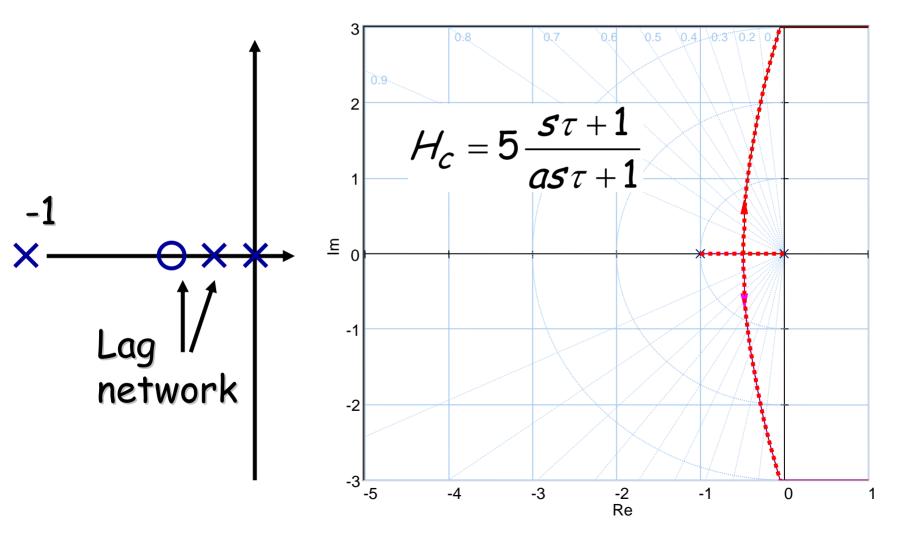
Lecture 7 Design in the s-plane (17)

Control Engineering 2004/2005 © Job van Amerongen

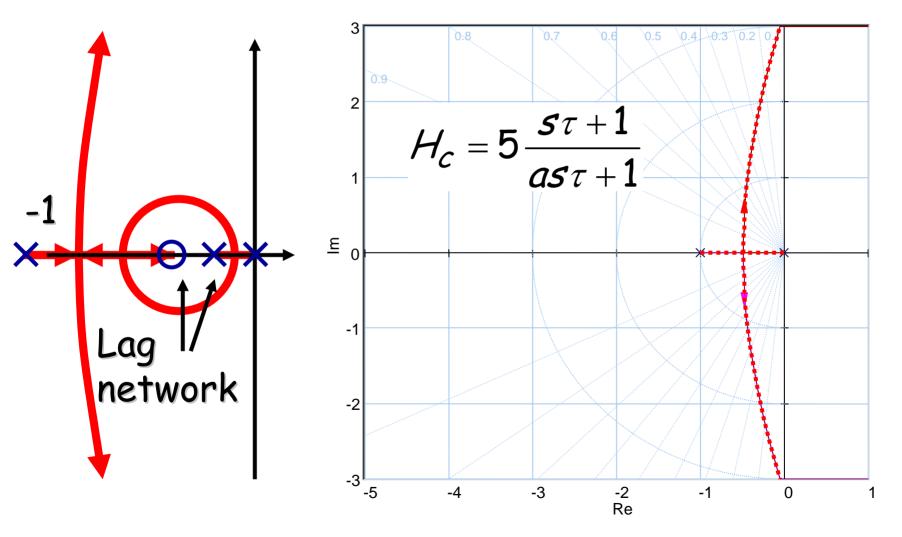
Response K = 5



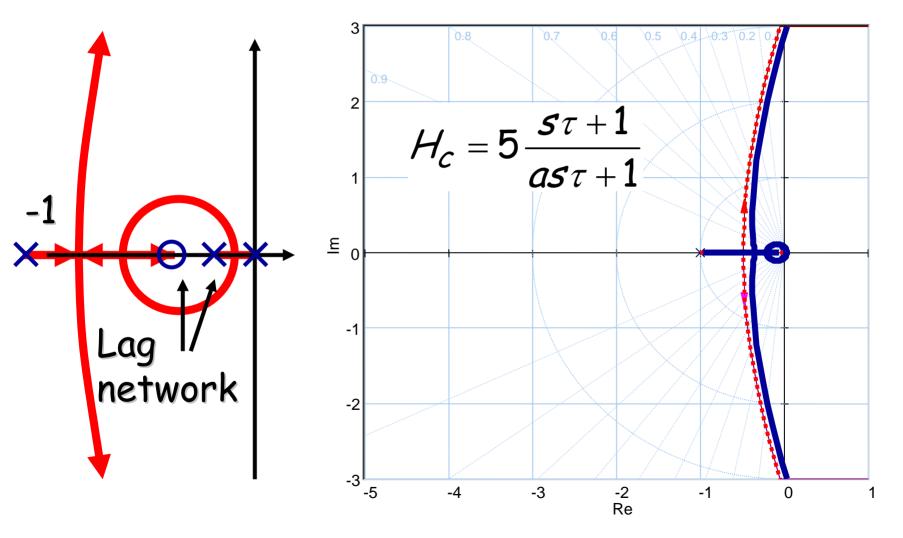
Lag network



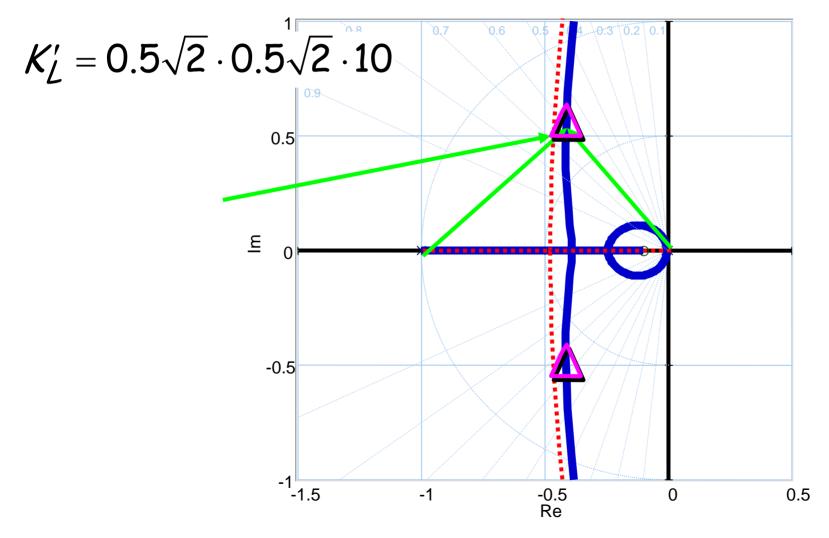
Lag network



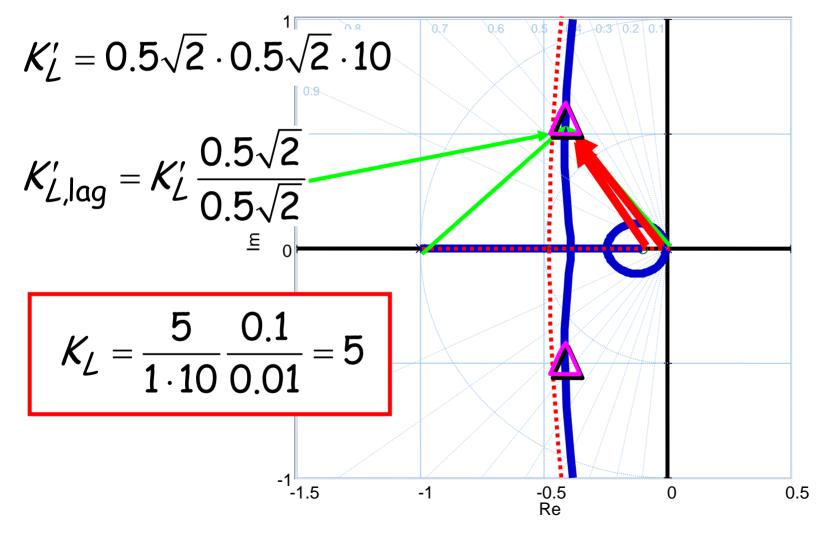
Lag network

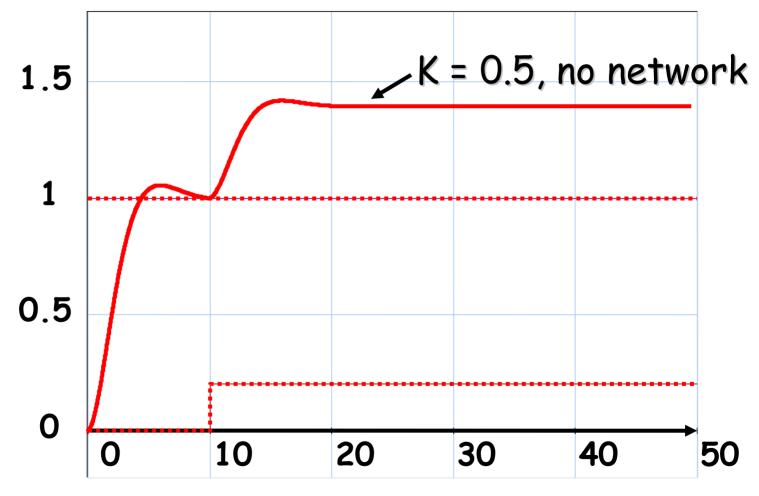


Gain for z = 0.7

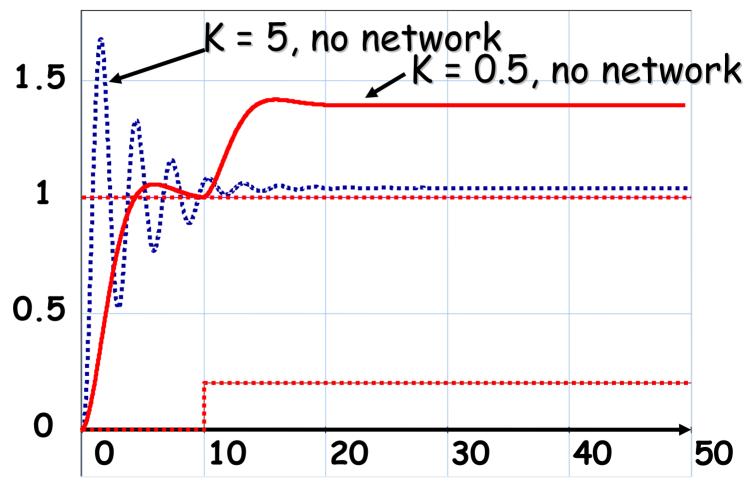


Gain for z = 0.7

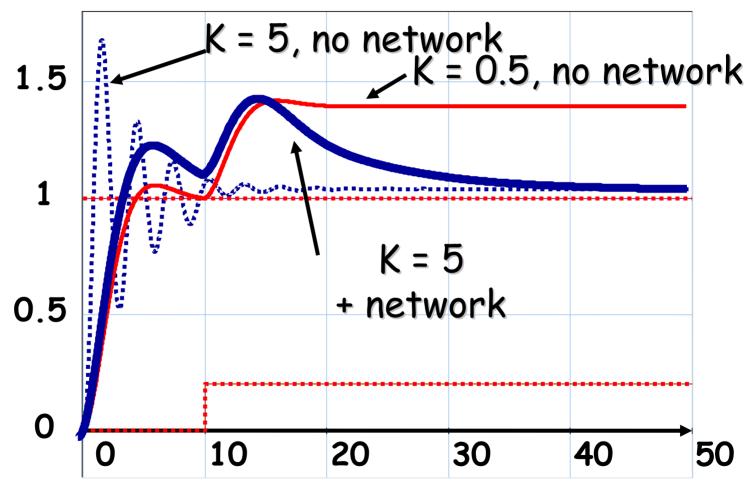




time



time



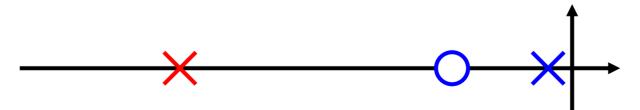
time

Conclusions (1)

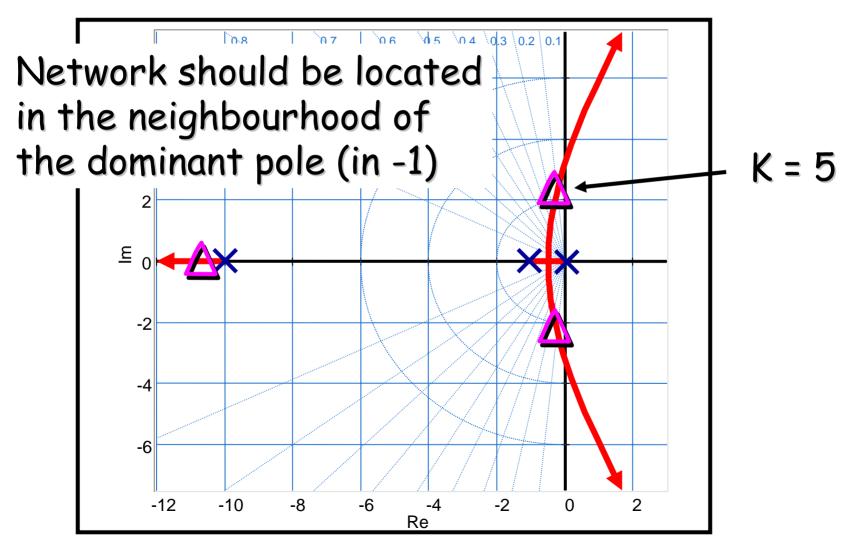
- Lag network
 - almost no influence on shape of the root locus at the desired location of the closed loop poles
 - dynamics similar to low-gain system
 - almost no influence on K'_L
 - K_L increases with a factor a (e.g. 10)
 - accuracy increases

Conclusions (2)

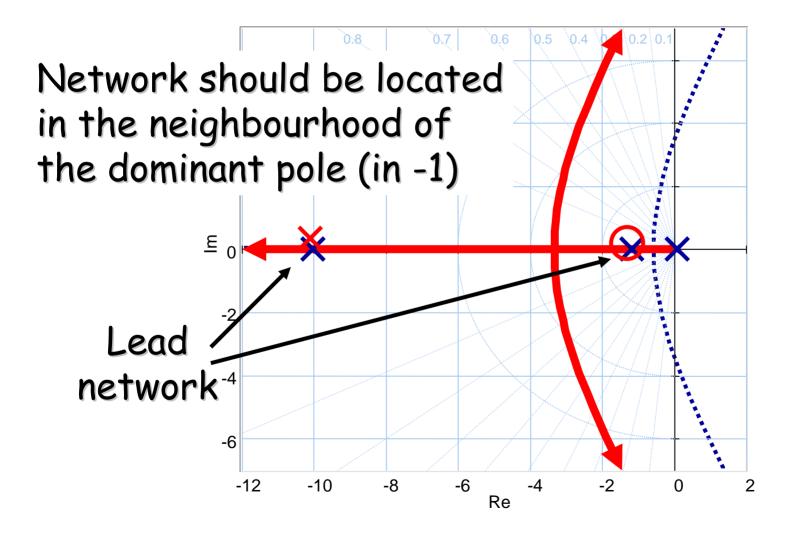
- Lag network
 - located close to the origin
 - a kind of 'dipole': "no" influence on the shape of the root locus
 - zero a factor 10 right of the dominant pole
 - pole a factor a (e.g. 10) right of the zero

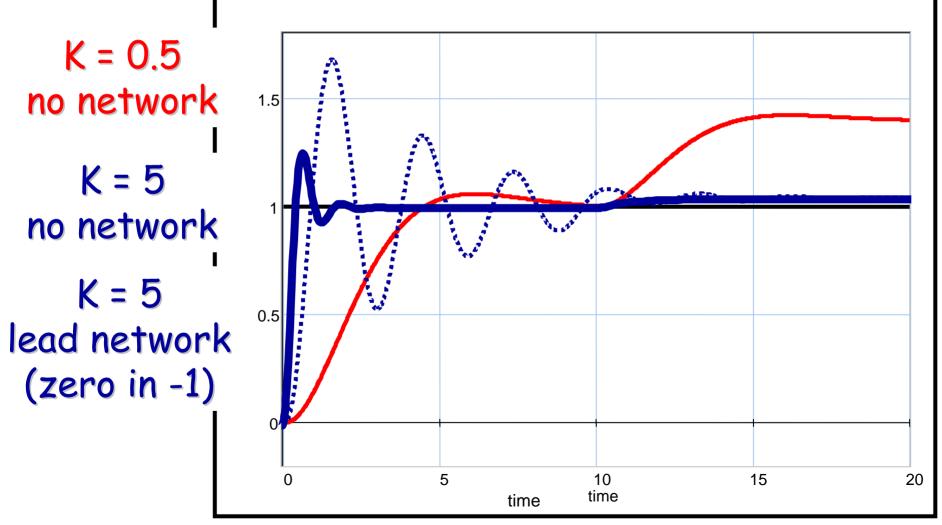


Lead network (phase lead)



Lead network (phase lead)



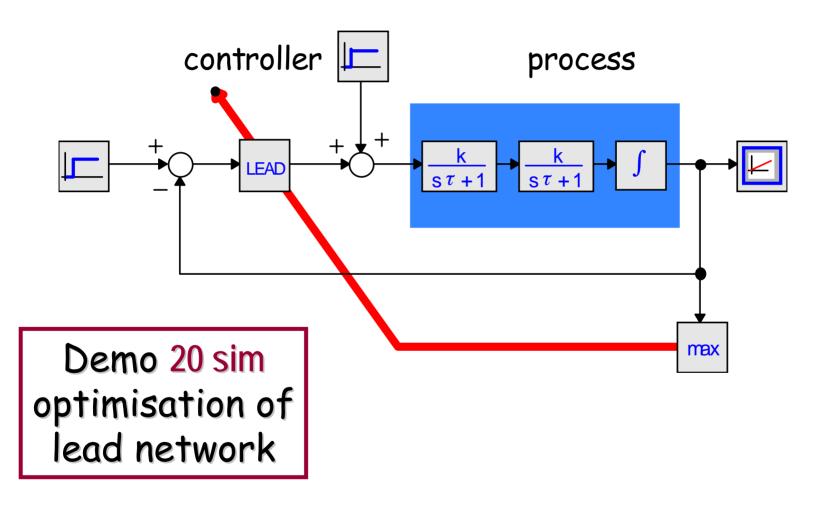


Control Engineering 2004/2005 © Job van Amerongen

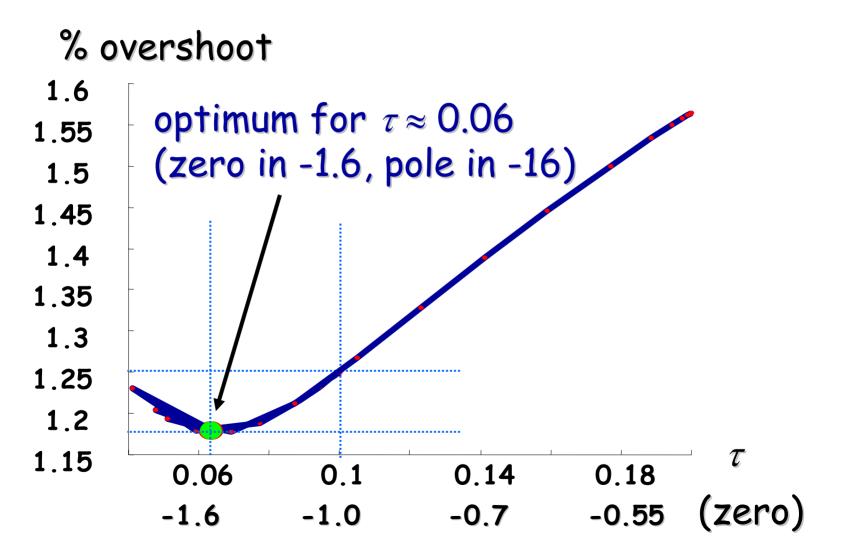
How to find optimal τ ?

- Trial and error
- Optimisation in 20-sim
- tau-locus

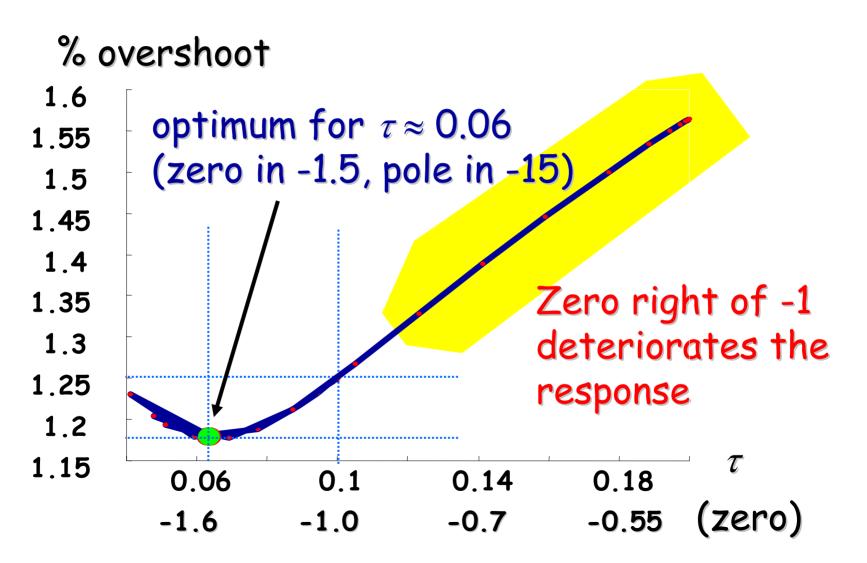
Optimisation in 20-sim

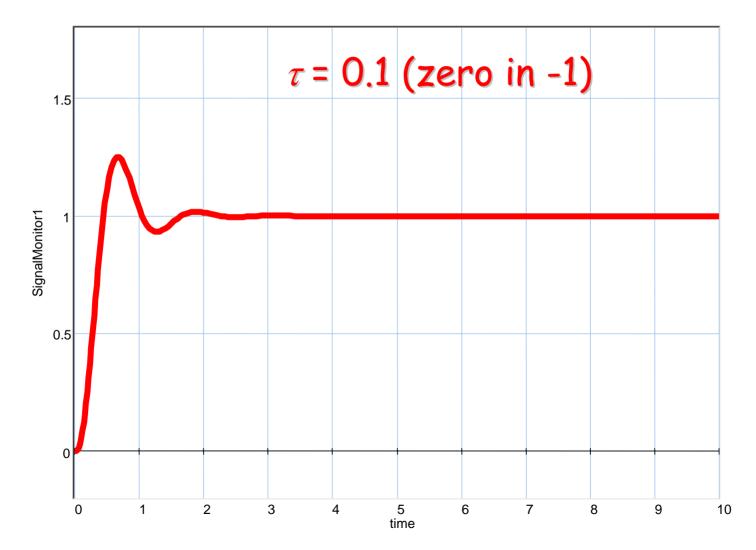


Optimum (sensitivity)

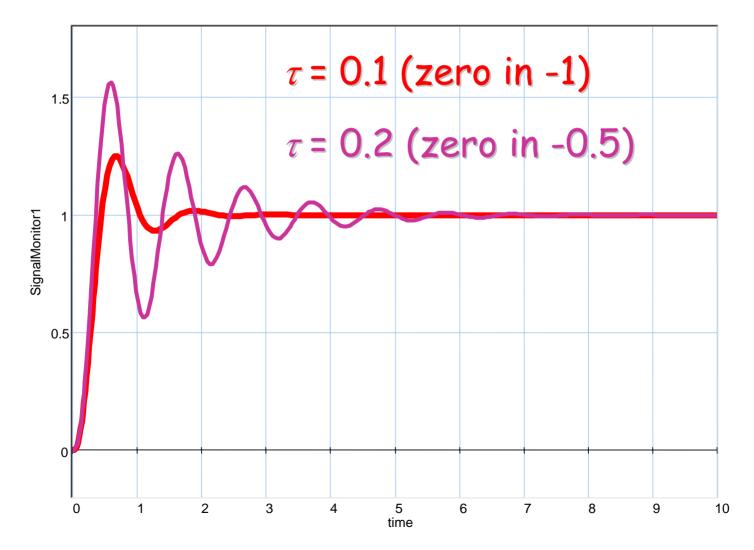


Optimum (sensitivity)



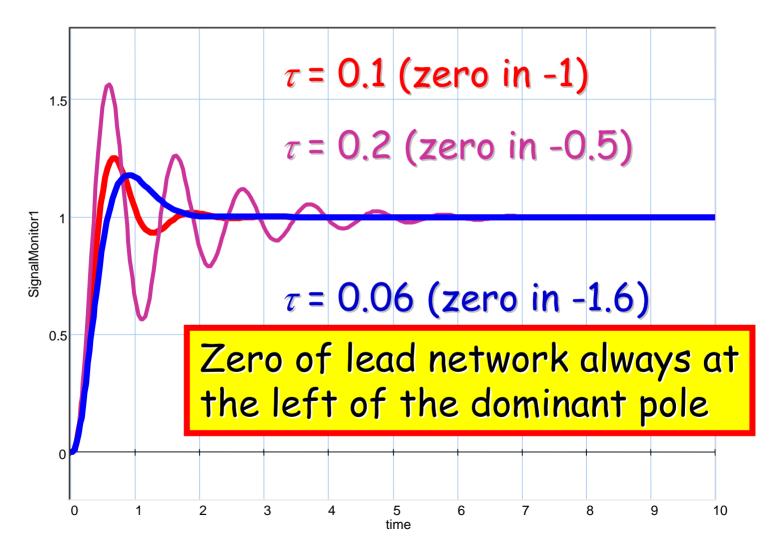


Control Engineering University of Twente



Lecture 7 Design in the s-plane (37)

Control Engineering 2004/2005 © Job van Amerongen



$$\mathcal{H}_{L} = \frac{\mathcal{K}_{L}'(10s\tau+1)}{s(s+1)(s+10)(s\tau+1)}$$

root locus equation: $1 + \mathcal{H}_{L} = 0$
 $s(s+1)(s+10)(s\tau+1) + \mathcal{K}_{L}'10s\tau + \mathcal{K}_{L}' = 0$
 $s(s+1)(s+10)s\tau + \mathcal{K}_{L}'10s\tau + + + s(s+1)(s+10) + \mathcal{K}_{L}' = 0$

$$s(s+1)(s+10)s\tau + K'_{L}10s\tau + S(s+1)(s+10) + K'_{L} = 0$$

$$s\tau [s(s+1)(s+10) + K'_{L}10] + [s(s+1)(s+10) + K'_{L}] = 0$$
with $\tau = \frac{1}{b}$ Equation for τ -locus
$$-\frac{1}{b} = \frac{s(s+1)(s+10) + K'_{L}}{s[s(s+1)(s+10) + K'_{L}10]}$$

$$-\frac{1}{b} = \frac{s(s+1)(s+10) + K'_{L}}{s[s(s+1)(s+10) + K'_{L}10]}$$

Zeros are found by solving the numerator:

$$S(S+1)(S+10) + K'_{L} = 0$$

$$\frac{1}{S(S+1)(S+10)} = -\frac{1}{K'_{L}}$$

Root locus equation for $K'_{L} = 50$ ($K_{L} = 5$)

$$-\frac{1}{b}=\frac{s(s+1)(s+10)+K'_{L}}{s\left[s(s+1)(s+10)+K'_{L}10\right]}$$

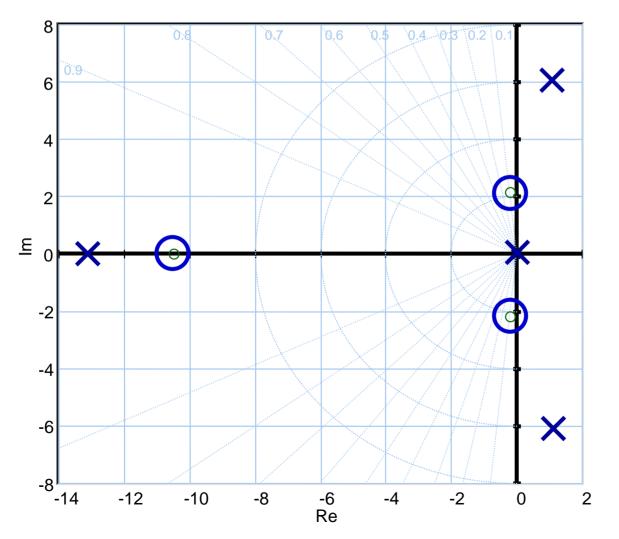
Poles are found by solving the denominator:

$$S[S(S+1)(S+10)+K'_{L}10]=0$$

 $\frac{1}{s(s+1)(s+10)} = -\frac{1}{10K'_{L}}, \text{ plus pole in } s = 0$ Root locus equation for $K'_{L} = 500$ ($K_{L} = 50$)

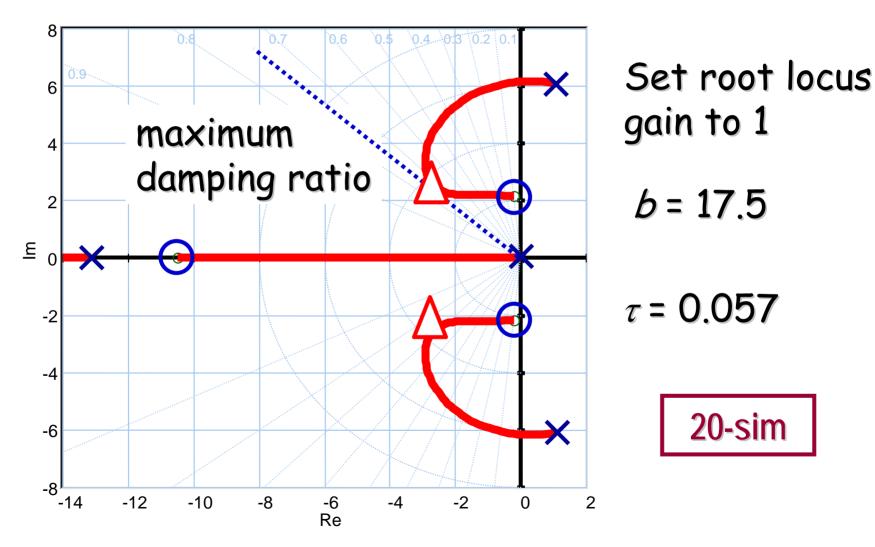
- Draw root locus of the uncompensated system
- Determine the roots for K = 5 \rightarrow zero's
- Determine the roots for $K = 50 \rightarrow poles$
- Draw the tau-locus

τ-locus (5)

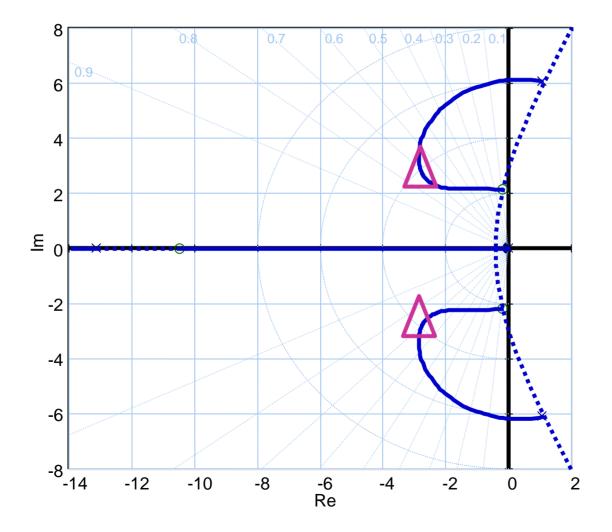


Set root locus gain to 1

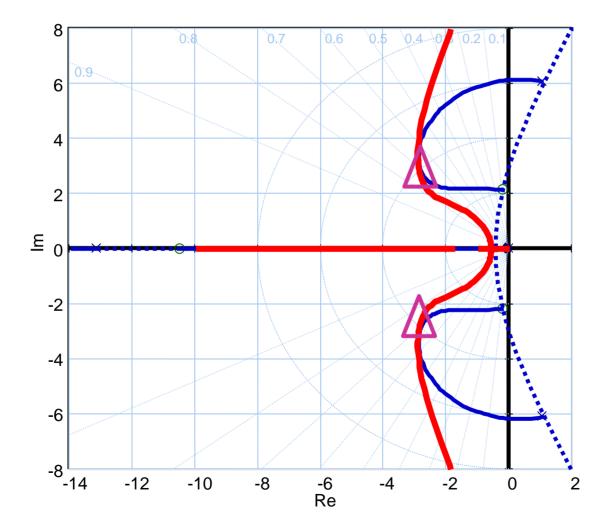
Lecture 7 Design in the s-plane (44)

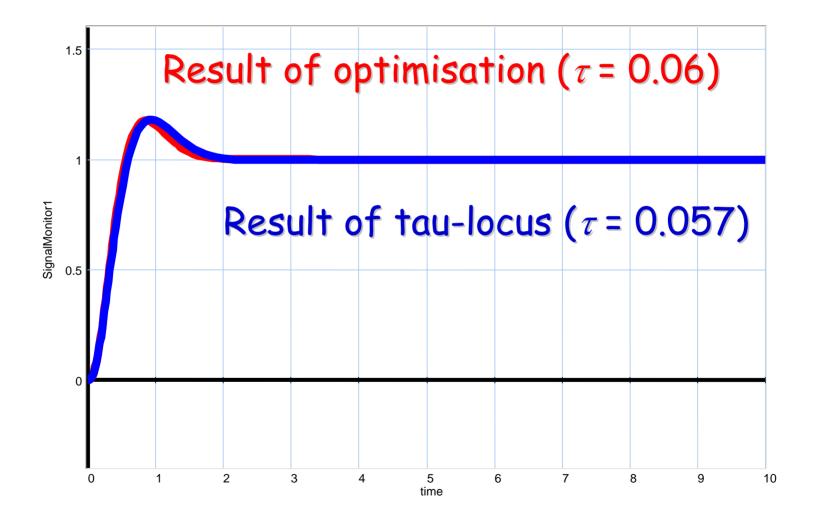


Resulting root locus



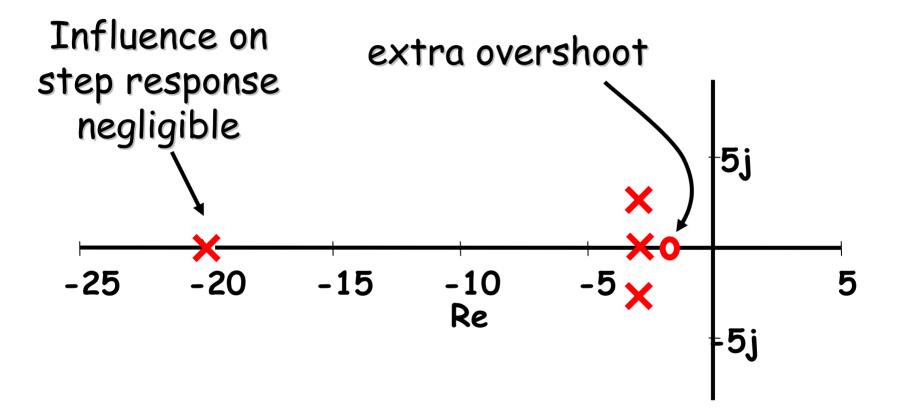
Resulting root locus



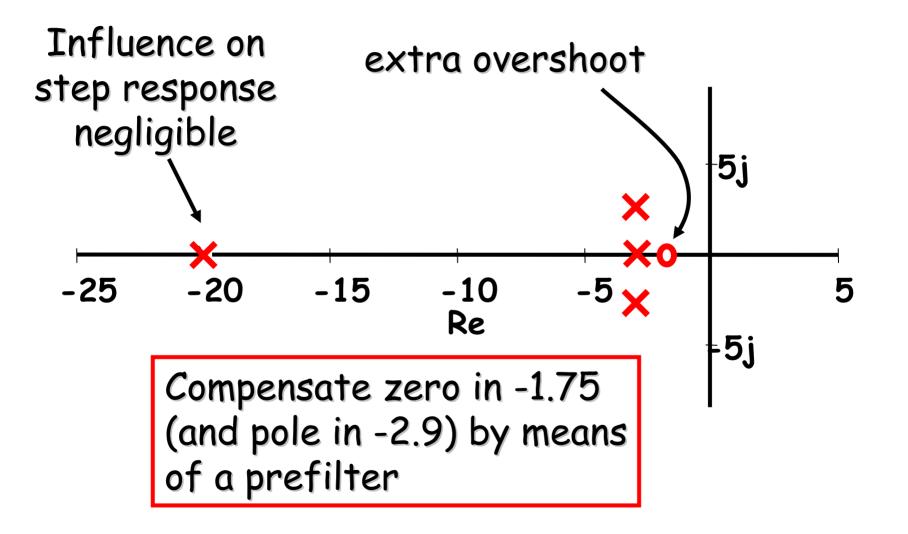


- Why is overshoot much larger than the 4% corresponding with z = 0.7?
- Examine closed-loop poles and zeros.

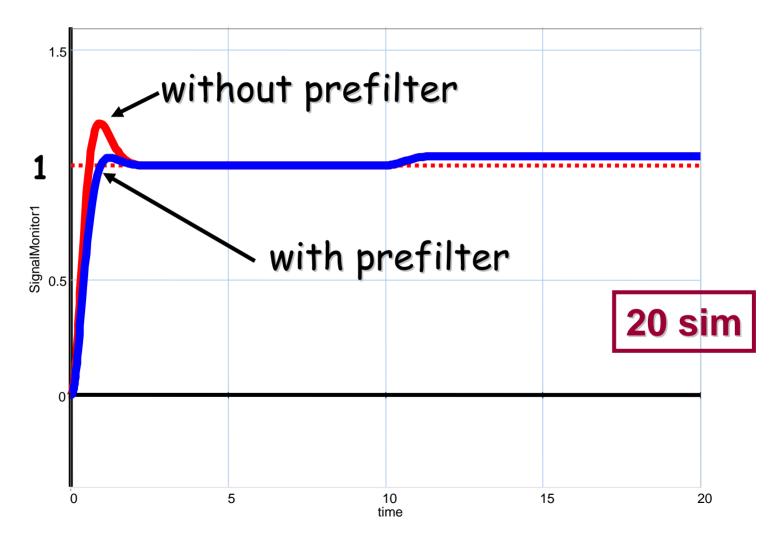
Close-loop poles



Close-loop poles

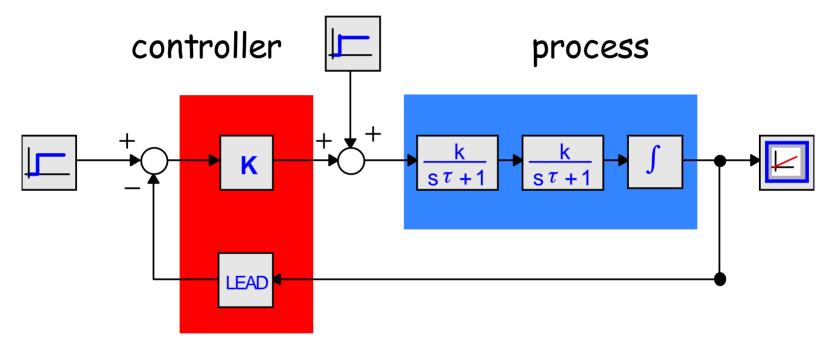


Response + prefilter



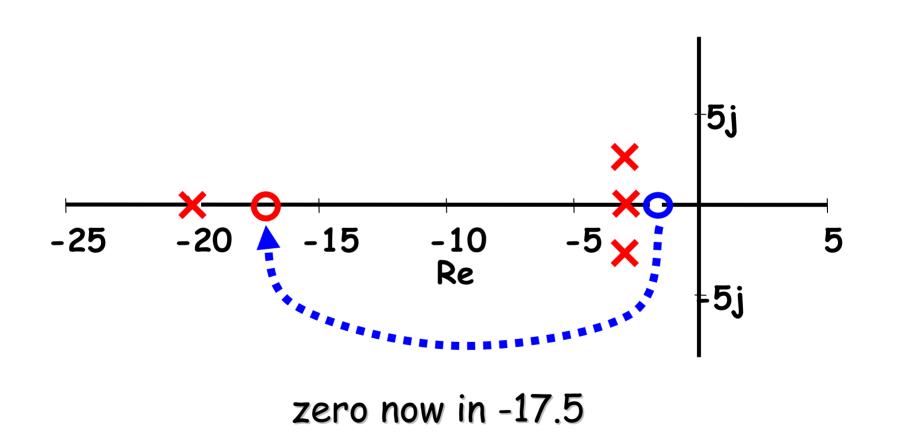
Lead network in feedback

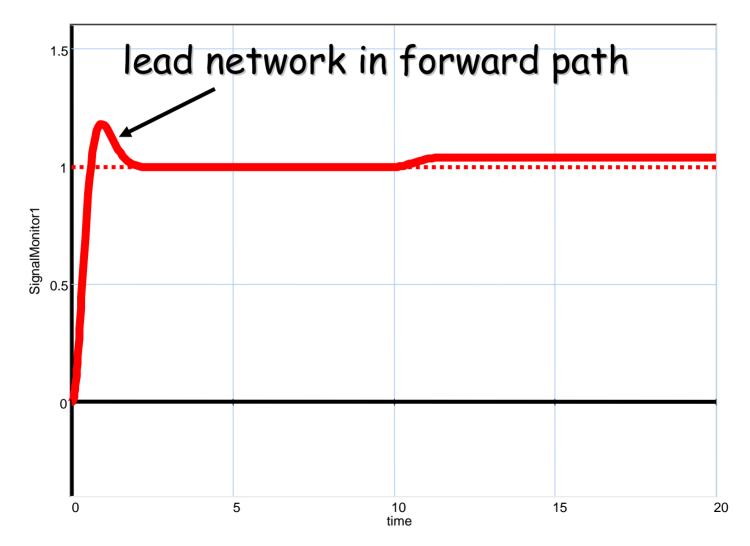
Control Engineering University of Twente

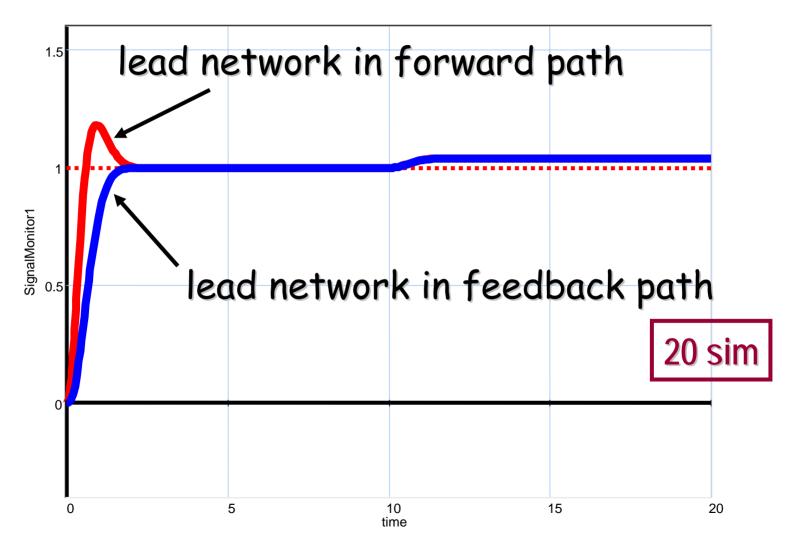


For C/R this implies that pole of lead network (in -17.5) is zero in C/R

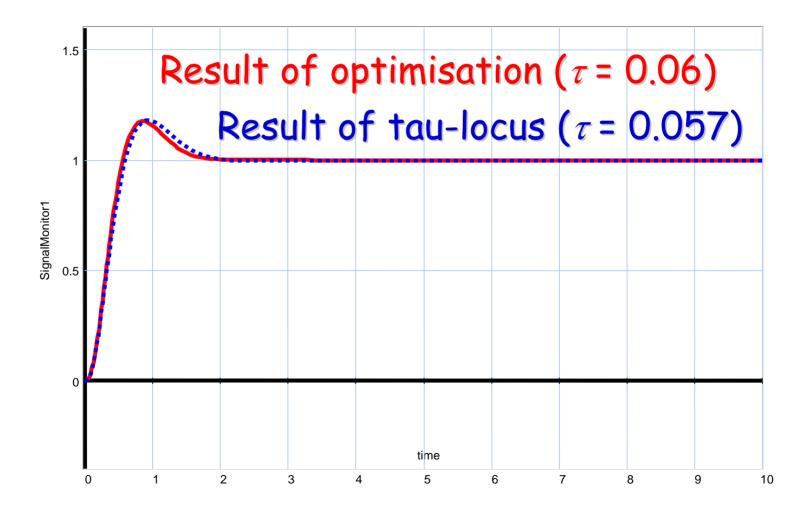
Poles and zeros



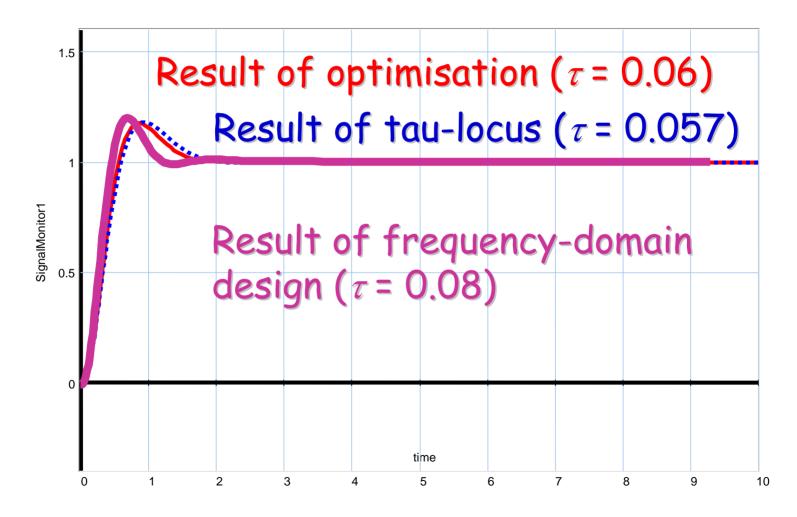




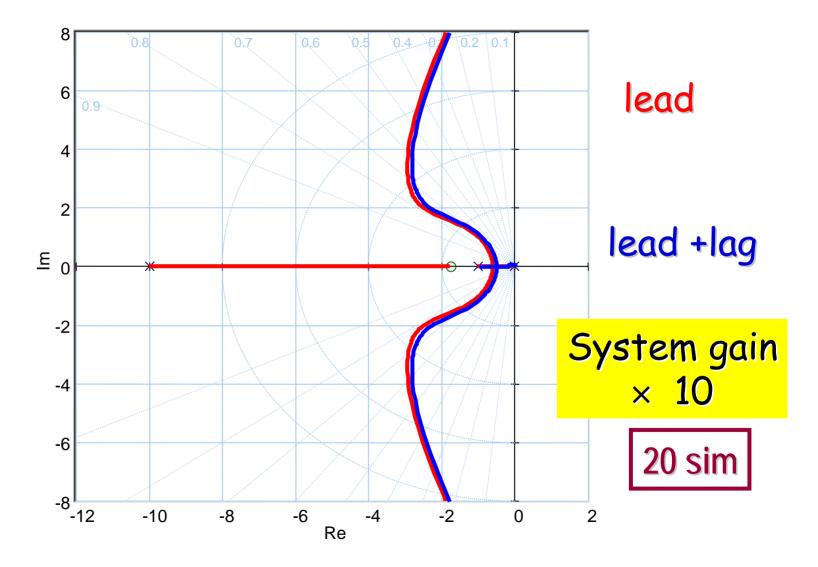
Comparison with frequency- domain design

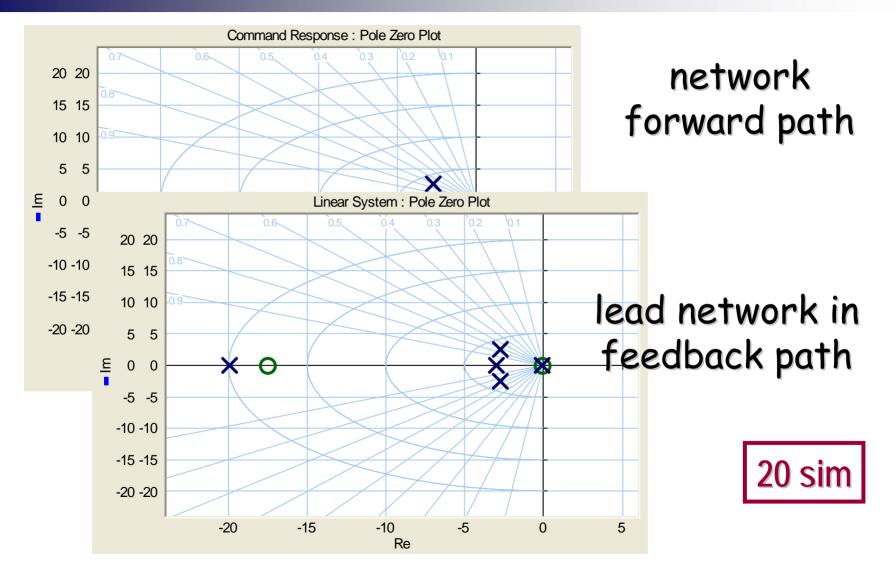


Comparison with frequency- domain design



Lead + lag





Conclusions

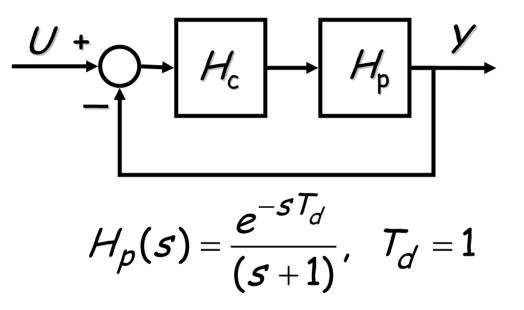
- Lag network:
 - dynamics approximately the same
 - (almost) no change in shape of root locus
 - root-locus gain the same, system gain a factor a higher
- Lead network
 - Faster dynamics (poles move away from origin)
 - accuracy improved

Conclusions

- Compensation networks can improve the dynamic performance (transients) and/or the accuracy
- Lead networks: add zero a little bit at the left of the dominant pole
- Lag networks: add zero a factor ten at the right of the dominant pole

System with time delay

Control Engineering University of Twente

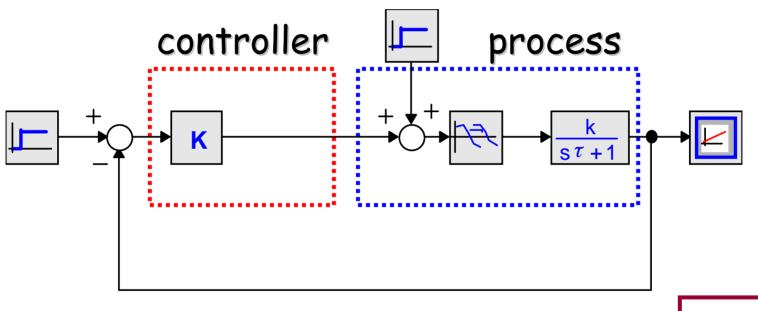


delay is present in systems

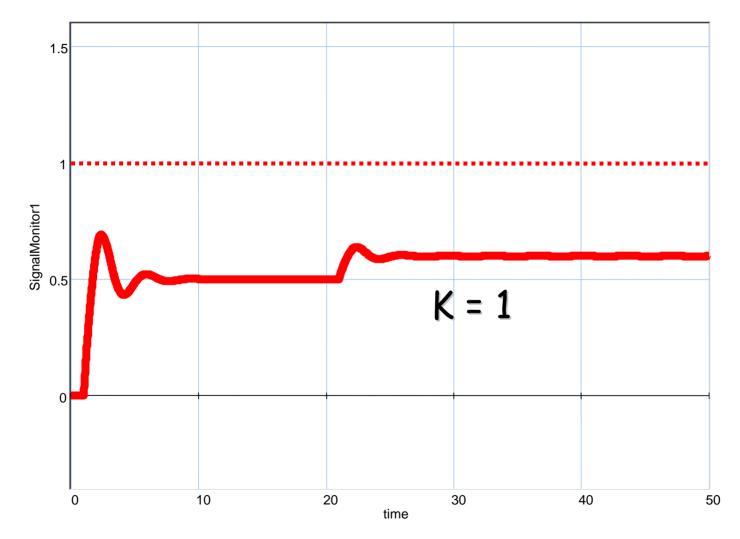
•with transportation lag (shower, refinery)

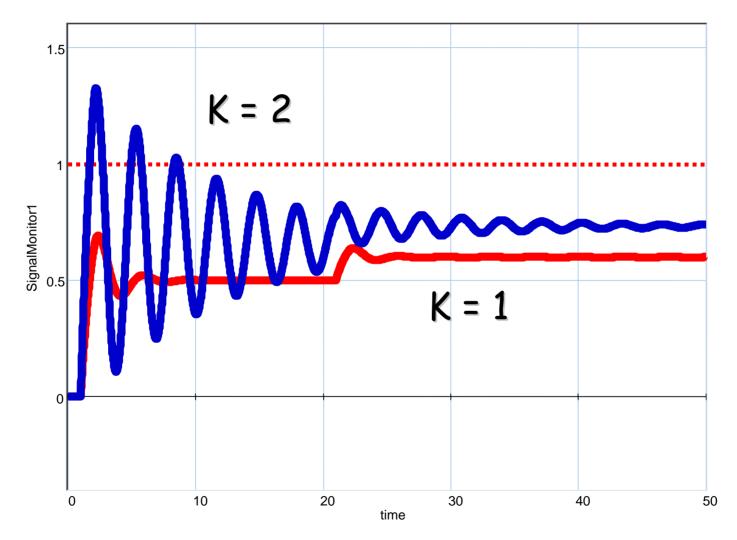
digital control systems

Simulation



20 sim



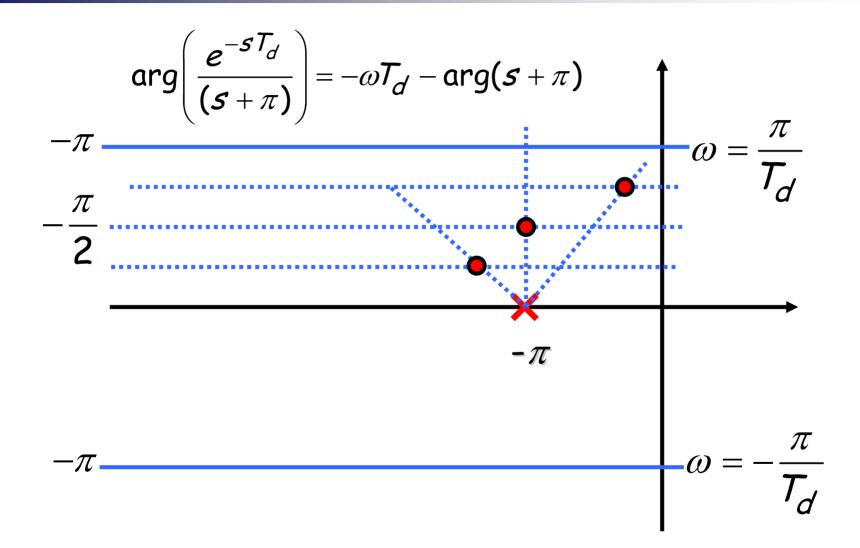


Root locus equation

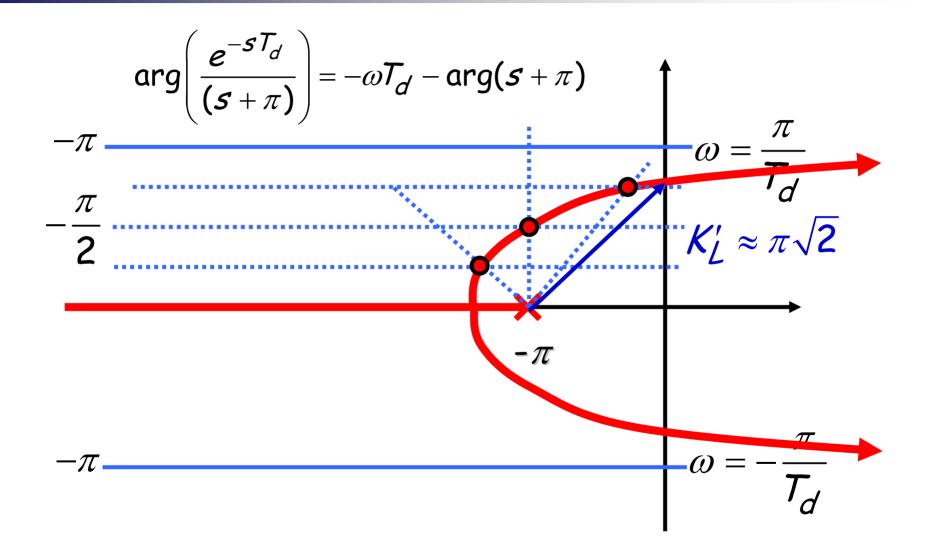
$$1 + \mathcal{K}'_{\mathcal{L}} \frac{e^{-sT_{d}}}{(s+\pi)} = 0 \longrightarrow \frac{e^{-sT_{d}}}{(s+\pi)} = -\frac{1}{\mathcal{K}'_{\mathcal{L}}}$$
$$\left| \frac{e^{-sT_{d}}}{(s+\pi)} \right| = \frac{e^{-aT_{d}}}{|s+\pi|}$$
$$s = a + j\omega$$

$$\arg\left(\frac{e^{-sT_{d}}}{(s+\pi)}\right) = -\omega T_{d} - \arg(s+\pi)$$

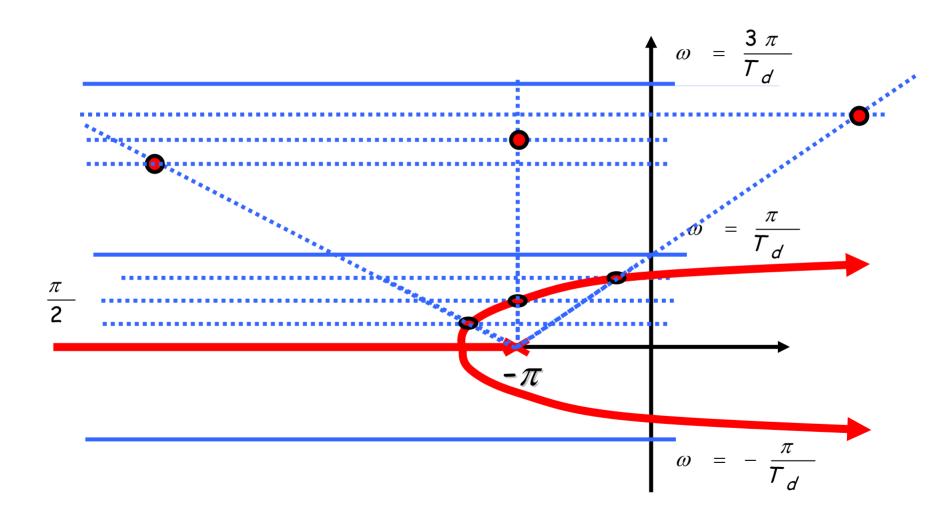
Root locus $(T_d = 1)$



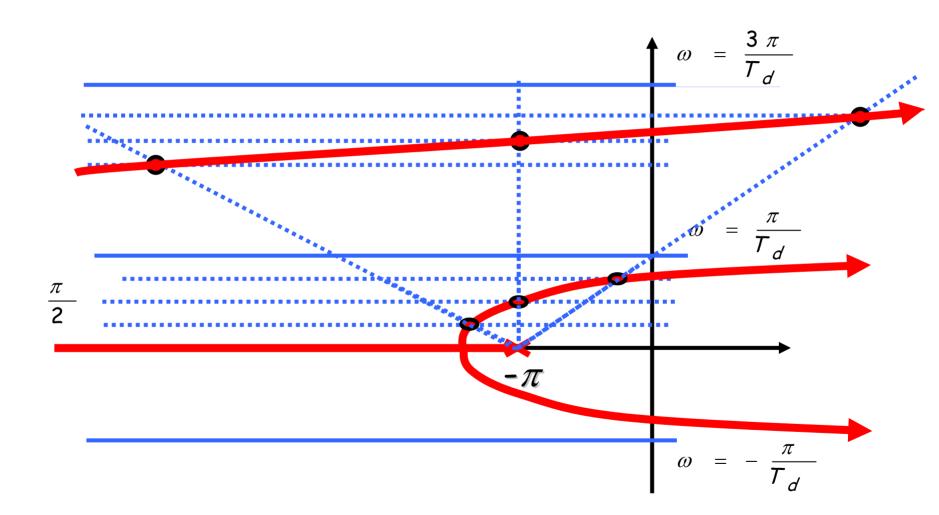
Root locus $(T_d = 1)$



Root locus (2)



Root locus (2)



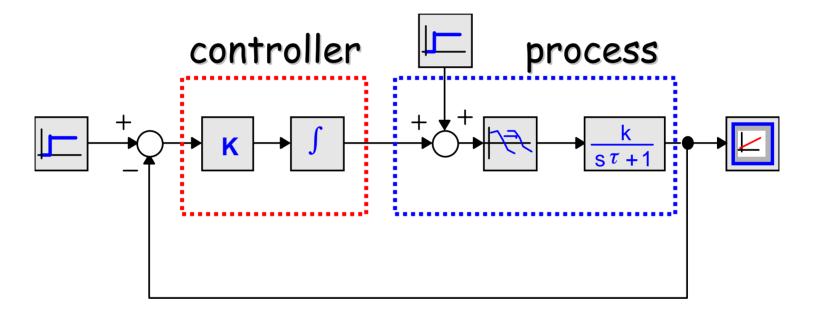
- This leads to an infinite number of branches
- delay can be modelled as an infinite number of poles in -∞
- stability is completely determined by primary region
- plays a role in sampled data systems

Compensation(?)

- Because the gain is constant and the phase lag increases linearly with the frequency
- (and thus exponentially in the Bode plot)
 - lead network can do no good
 - consider pure integral control

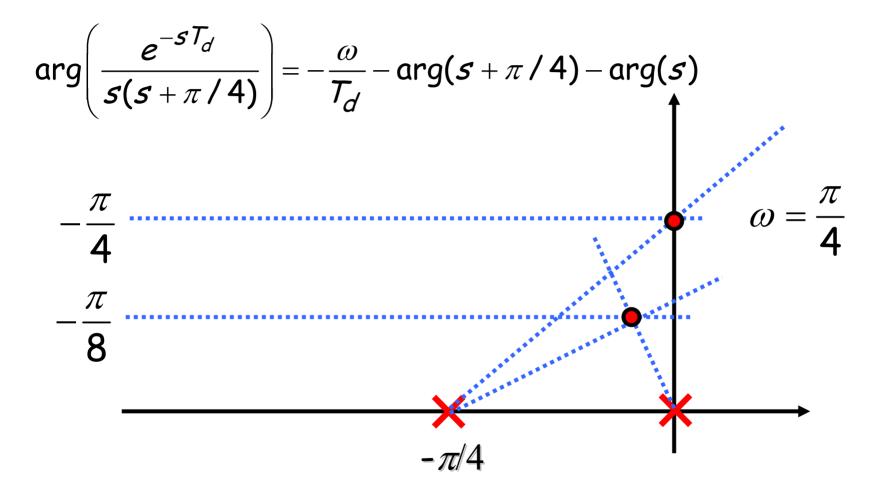
Pure integral control

Control Engineering University of Twente

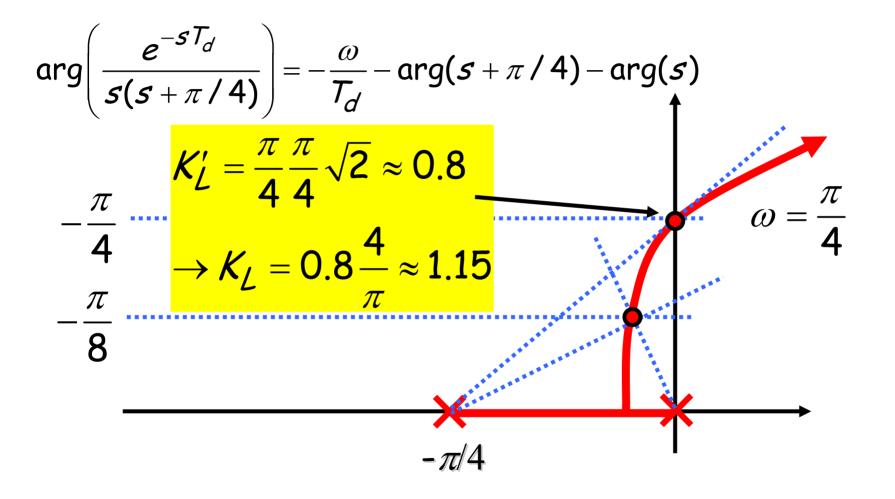


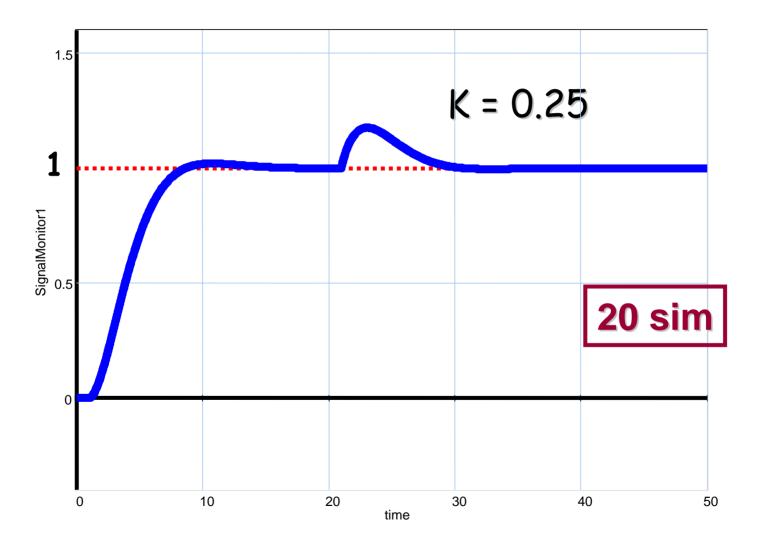
20 sim

Root locus $(T_d = 1)$



Root locus $(T_d = 1)$



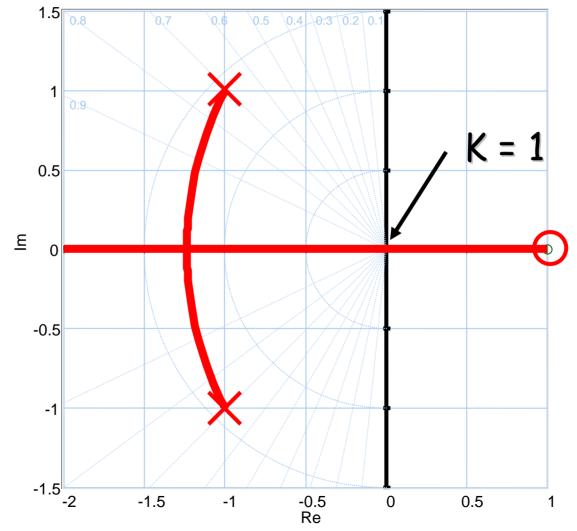


Conclusions

- Bandwidth of systems with delay is limited
- slow
- integral control improves the accuracy

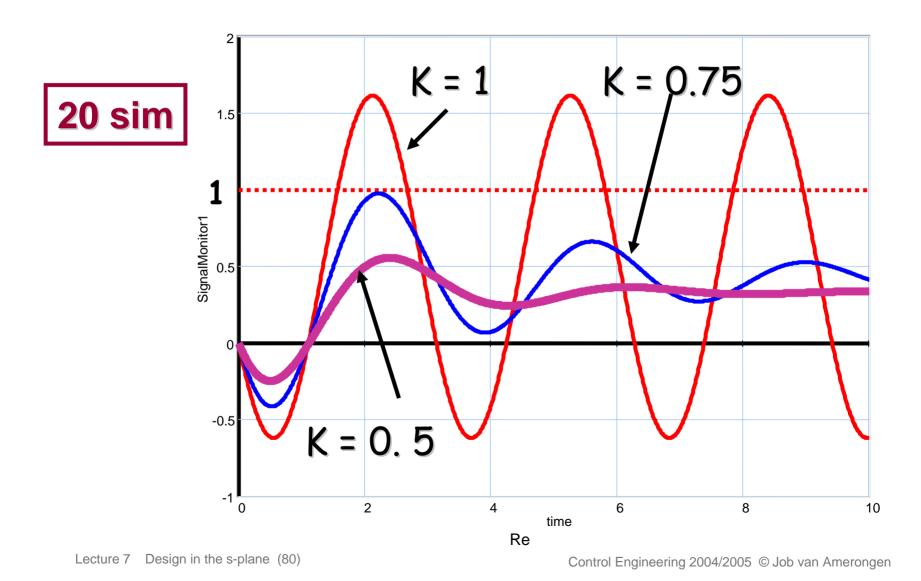
Non-minimum phase system

Control Engineering University of Twente



Lecture 7 Design in the s-plane (79)

Control Engineering 2004/2005 © Job van Amerongen



Conclusions

- Performance of non-minimum phase systems is limited
- for high gains, always unstable

Open loop unstable

