

Frequency Domain Design

Job van Amerongen

Control Engineering, Faculty of Electrical Engineering University of Twente, Netherlands www.ce.utwente.nl/amn J.vanAmerongen@utwente.nl

- Frequency diagrams of open and closed systems
- Sensitivity
- Design of lead and lag networks

Feedback only effects the low-frequencies

If K large, for $\omega \rightarrow 0$, $H_{\text{closed loop}} \rightarrow 1$

	open loop	closed loop
	$H_L = \frac{K}{s+1}$	$\mathcal{H} = rac{\mathcal{K}}{\mathcal{S} + (1 + \mathcal{K})}$
ω = 0	K	$\frac{K}{1+K}$
$\omega \to \infty$	$\frac{\mathcal{K}}{j\omega}$	$\frac{\mathcal{K}}{j\omega}$

Feedback only effects the low-frequencies

If K large, for $\omega \rightarrow 0$, $H_{\text{closed loop}} \rightarrow 1$

Feedback only effects the low-frequencies

Control Engineering 2003-2004 (6) Frequency domain design (6)

20-sim: 10/(s+1)

Control Engineering 2004/2005 © Job van Amerongen

Control Engineering University of Twente

Control Engineering 2003-2004 (6) Frequency domain design (8)

Control Engineering 2004/2005 © Job van Amerongen

$$H_{cl} = \frac{H_{L}}{1 + H_{L}}$$
$$|H_{L}| \approx 1.25$$
$$|1 + H_{L}| \approx 0.25$$
$$\arg(H_{L}) \approx -\pi$$
$$\arg(1 + H_{L}) \approx -\frac{\pi}{2}$$
$$H_{cl} \rightarrow 5e^{-j\frac{\pi}{2}}$$

• Design a proportional controller such that the system has a phase margin of 70 degrees ($z \approx 0.7$) for the process:

$$\mathcal{H}(j\omega) = \frac{10}{j\omega(j\omega+1)(j\omega+10)}$$

Design

Design

Closed system (Bode)

Control Engineering University of Twente

Control Engineering 2003-2004 (6) Frequency domain design (15)

Control Engineering 2004/2005 © Job van Amerongen

Step response

Closed system (Bode)

Sensitivity (S)

Frequency (rad/sec)

Sensitivity (S)

Higher gain: Better suppression of low-frequency disturbances, but amplification of higher frequencies

Frequency (rad/sec)

 $S(j\omega)$ = Sensitivity (Afwijkingsverhouding) $S = \frac{1}{1 + H_{l_1}}$

If H_L has at least two more poles than zero's: All important of the service o

$$\int_{0}^{\infty} \log |\mathcal{S}(j\omega)| d\omega = 0$$

All improvements in one area, have to be paid for by a deterioration in another area (compare waterbed)

Sensitivity (S)

Consider the following system

Control Engineering 2003-2004 (6) Frequency domain design (24)

Control Engineering 2004/2005 © Job van Amerongen

Control Engineering 2003-2004 (6) Frequency domain design (25)

Control Engineering 2004/2005 © Job van Amerongen

Response K = 1

Sensitivity

Response K = 3

Control Engineering 2003-2004 (6) Frequency domain design (28)

Control Engineering 2004/2005 © Job van Amerongen

Prefilter

attenuate the resonance frequencies

Prefilter

Closed-loop Bode

Closed-loop Bode + prefilter

Response

- Disturbance suppression does not require high damping ratios
- Response on reference changes can be improved by means of a prefilter
- But...
 - gain and phase margins were small
 - robustness for parameter variations is small

- Try to improve the robustness by designing more advanced compensators that simultaneously guarantee
 - good transients
 - high disturbance suppression
Uncompensated system

Uncompensated system

Decrease HF gain

Lag network

Control Engineering University of Twente

Control Engineering 2003-2004 (6) Frequency domain design (40)

Control Engineering 2003-2004 (6) Frequency domain design (42)

Control Engineering 2003-2004 (6) Frequency domain design (43)

Control Engineering 2003-2004 (6) Frequency domain design (44)

Decrease HF phase shift

Combinations

Lead network (phase lead)

Control Engineering University of Twente

Control Engineering 2003-2004 (6) Frequency domain design (47)

Control Engineering 2003-2004 (6) Frequency domain design (48)

Control Engineering 2003-2004 (6) Frequency domain design (49)

Conclusions

- Lag network:
 - dynamics approximately the same
 - (same bandwidth as low-gain system)
 - accuracy improved by increasing the lowfrequency gain
- Lead network
 - Faster dynamics (increased bandwidth)
 - accuracy improved

Combination (Bode)

Combination (responses)

Accurate Design

Accurate Design

Control Engineering University of Twente

a > 10 gives only a little extra phase lead but amplifies high frequencies

Frequency (rad/sec)

- Choose a = 10 by default
- Draw the bode plot for the desired gain
- The lead network gives 10 dB extra gain at $\varphi_{\rm max}$
- \bullet We want φ_{\max} at the new zero crossing of the modulus

Accurate Design

Control Engineering University of Twente

Control Engineering 2003-2004 (6) Frequency domain design (57)

- We want φ_{max} at the new zero crossing of the modulus $\omega = \omega_b$
- This implies that
 - zero should be located in $\omega = \omega_b / \sqrt{10}$
 - pole should be located in $\omega = \omega_b \cdot \sqrt{10}$
- with ω_b = 3.8 it follows that
 - $\omega_b / \sqrt{10} = 1.2$
 - $\omega_b \cdot \sqrt{10} = 12$

Result

Control Engineering 2003-2004 (6) Frequency domain design (59)

Sensitivity

Sensitivity

Sensitivity

Nichols

Control Engineering 2003-2004 (6) Frequency domain design (63)

Nichols

Control Engineering 2003-2004 (6) Frequency domain design (64)

Nyquist

Conclusions

- Compensation networks can improve the dynamic performance (transients) and/or the accuracy
- Lead networks: located in highfrequency region
- lag networks: located in lowfrequency region

Op amp realisation

Op amp realisation

Control Engineering University of Twente

Control Engineering 2003-2004 (6) Frequency domain design (70)

Control Engineering University of Twente

20 sim opamp demo

Control Engineering 2003-2004 (6) Frequency domain design (72)