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Relation s ←→ jωRelation s ←→ jω

s = α +jω

for α = 0    s = jω
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ContentsContents

•• Relation Relation ss ↔↔ jjωω
•• Frequency responses:Frequency responses:

–– Nyquist (polar plot)Nyquist (polar plot)
–– Bode  Bode  
–– Nichols Nichols 
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Relation s ↔ jωRelation s ↔ jω

ωω ||H H ((jjωω)|)| argarg ((H H ((jjωω))))
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Nyquist plot (a/(jω+a))Nyquist plot (a/(jω+a))

ωω ||H H ((jjωω)|)| argarg ((H H ((jjωω))))
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Relation s ↔ jωRelation s ↔ jω

ωω ||H H ((jjωω)|)| argarg ((H H ((jjωω))))
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Nyquist plotNyquist plot

ωω ||H H ((jjωω)|)| argarg ((H H ((jjωω))))
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Bode plot (a/jω)Bode plot (a/jω)

ωω ||H H ((jjωω)|)| argarg ((H H ((jjωω))))
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Bode plot (a/jω)Bode plot (a/jω)
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Bode plot (a/(jω+a))Bode plot (a/(jω+a))
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Bode plot (a/(jω +a))Bode plot (a/(jω +a))
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Nichols diagramNichols diagram
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Demo 20-simDemo 20-sim

FirstFirst--order systemorder system
•• NyquistNyquist
•• BodeBode
•• NicholsNichols

2020--simsim
demodemo
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Rubber membrane modelRubber membrane model

•• ss--plane can be seen as a rubber plane can be seen as a rubber 
membranemembrane

•• poles are needles under the membranepoles are needles under the membrane
•• zeros are push pins in the membranezeros are push pins in the membrane
•• push pins in infinitypush pins in infinity
•• H H ((jjωω) is a cross cut through the ) is a cross cut through the 

membrane at the membrane at the jjωω axisaxis
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Complex polesComplex poles

jjωω

jj
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Bode plot (complex poles)Bode plot (complex poles)

Plant : Bode Plot
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Basic elements (jω)Basic elements (jω)
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Basic elements (jω+a)Basic elements (jω+a)
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Basic elements (-jω+a)Basic elements (-jω+a)
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Basic elements (2nd order)Basic elements (2nd order)

Plant : Bode Plot
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CombinationsCombinations
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CombinationsCombinations
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Relation s ↔ jωRelation s ↔ jω

•• Relation s Relation s ↔↔ jjωω for lag and lead for lag and lead 
networksnetworks

ωω

rere
imim
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Relation s ↔ jωRelation s ↔ jω

•• Relation s Relation s ↔↔ jjωω for lag and lead for lag and lead 
networksnetworks
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Relation s ↔ jωRelation s ↔ jω

•• Relation s Relation s ↔↔ jjωω for lag and lead for lag and lead 
networksnetworks
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Relation s ↔ jωRelation s ↔ jω

•• Relation s Relation s ↔↔ jjωω for lag and lead for lag and lead 
networksnetworks
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Relation s ↔ jωRelation s ↔ jω
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Relation s ↔ jωRelation s ↔ jω
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Relation s ↔ jωRelation s ↔ jω
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Relation s ↔ jωRelation s ↔ jω
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Relation s ↔ jωRelation s ↔ jω

2x2x
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Relation s ↔ jωRelation s ↔ jω
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Relation s ↔ jωRelation s ↔ jω
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Relation s ↔ jωRelation s ↔ jω
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Demo’s 20-simDemo’s 20-sim

•• lag networklag network
–– bodebode
–– nyquistnyquist
–– nicholsnichols

•• lead networklead network
–– bodebode
–– nyquistnyquist
–– nichols

2020--simsim
demodemo

2020--simsim
demodemo

nichols
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IdentificationIdentification

Linear System : Bode Plot
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StabilityStability

We consider the following feedback systemWe consider the following feedback system
u y

HL

The system is on the border of instability when:The system is on the border of instability when:

( )( ) 1 and arg ( )L LH j H jω ω π= = −

or ( ) 1 j
LH j e πω −=
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StabilityStability

Linear System : Nyquist Diagram
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StabilityStability

Linear System : Nyquist Diagram
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StabilityStability

Linear System : Nyquist Diagram
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StabilityStability

Linear System : Nyquist Diagram
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Shade the area at the Shade the area at the 
right of the curveright of the curve

If If --1 in the shaded1 in the shaded
area: closed loop systemarea: closed loop system
UNSTABLEUNSTABLE

Linear System Re

--11

rere

imim

ωω

Draw the Nyquist plotDraw the Nyquist plot

Mirror the plot withMirror the plot with
respect to rerespect to re--axisaxis

-1 Stability criterion-1 Stability criterion
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Conditionally StableConditionally Stable

imimStable ?Stable ?
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Conditionally StableConditionally Stable
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Conditionally StableConditionally Stable
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Important !Important !

•• The stability of the The stability of the CLOSEDCLOSED system system 
depends on the fact whether the depends on the fact whether the 
Nyquist plot of the Nyquist plot of the OPENOPEN system system 
encircles encircles --11

•• If the Nyquist plot of the If the Nyquist plot of the CLOSEDCLOSED
system encircles system encircles --1, this tells nothing 1, this tells nothing 
about the stability of the system ! about the stability of the system ! 
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ExerciseExercise

imim
Find theFind the
poles and zeropoles and zero’’ss
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Draw the Draw the 
root locusroot locus
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ϕϕ
Phase margin:Phase margin:

ϕϕ

Linear System Re
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Gain & Phase marginsGain & Phase margins
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Gain & Phase margins (Bode)Gain & Phase margins (Bode)
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Gain & phase margins Gain & phase margins 

•• Gain margin determines how much the Gain margin determines how much the 
gains may vary, before the system gains may vary, before the system 
becomes unstablebecomes unstable

•• Phase margin influences transient Phase margin influences transient 
behaviourbehaviour (damping ratio, overshoot)(damping ratio, overshoot)

•• Second order system:Second order system:
•• z z ≈≈ phase margin (in degrees) / 100phase margin (in degrees) / 100
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Gain & Phase margins (Nichols)Gain & Phase margins (Nichols)
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ExcercisesExcercises

•• Investigate the influence of gain and Investigate the influence of gain and 
phase margins on the step response phase margins on the step response 
of the close loop system for various of the close loop system for various 
secondsecond-- and thirdand third--order systemsorder systems
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WarningWarning

DonDon’’t mix up the t mix up the 
•• ss--plane with its real (plane with its real (αα) and imaginary ) and imaginary 

((jjωω) axes and ) axes and 
•• The complex plane used to draw the The complex plane used to draw the 

Nyquist (polar) plot of Nyquist (polar) plot of H H ((jjωω))

re(sre(s))

im(sim(s) = ) = jjωω

re(H(jre(H(jω))))

Im(H(jIm(H(jωω))ss--planeplane


	Frequency Responses 
	Relation s  jw
	Contents
	Relation s  jw
	Nyquist plot (a/(jw+a))
	Relation s  jw
	Nyquist plot
	Bode plot (a/jw)
	Bode plot (a/jw)
	Bode plot (a/(jw+a))
	Bode plot (a/(jw +a))
	Nichols diagram
	Demo 20-sim
	Rubber membrane model
	Complex poles
	Bode plot (complex poles)
	Basic elements (jw)
	Basic elements (jw+a)
	Basic elements (-jw+a)
	Basic elements (2nd order)
	Combinations
	Combinations
	Relation s  jw
	Relation s  jw
	Relation s  jw
	Relation s  jw
	Relation s  jw
	Relation s  jw
	Relation s  jw
	Relation s  jw
	Relation s  jw
	Relation s  jw
	Relation s  jw
	Relation s  jw
	Demo’s 20-sim
	Identification
	Stability
	Stability
	Stability
	Stability
	Stability
	-1 Stability criterion
	Conditionally Stable
	Conditionally Stable
	Conditionally Stable
	Important !
	Exercise
	Gain & Phase margins
	Gain & Phase margins (Bode)
	Gain & phase margins
	Gain & Phase margins (Nichols)
	Excercises
	Warning

