

Control Engineering Regeltechniek

Job van Amerongen

Control Engineering Department of Electrical Engineering University of Twente, Netherlands

www.ce.utwente.nl/amn

Teletop: 121044 Regeltechniek

J.vanAmerongen@utwente.nl

Control Engineering 2004/2005 -Introduction

Introduction

- Organisation
- Control, Steering
- Feedforward, Feedback

Web site:

www.ce.utwente.nl/amn (Student info) TELETOP: 121044 Regeltechniek

Study material:

- Cursus Regeltechniek van de OU (via Union Shop)
- Content of the lectures: (copies of these slides)

Software (20-sim 3.5):

Use license file of Dynamic Systems or download the file from the teletop site

(Matlab)

Control Engineering 2004/2005 - Introduction (4)

• Exam:

• No open book !!

One sheet of A4 with notes allowed

Control Engineering 2004/2005 - Introduction (5)

Control Engineering University of Twente

Control Engineering 2004/2005 - Introduction (6)

Control Engineering University of Twente

- Domestic:
 - Central heating system
 - Freezer
 - Washing machine

- Automotive:
 - Air conditioning
 - Cruise control
 - <u>Automated highway</u> (http://www.path.berkeley.edu/PATH/Publicati ons/Videos/auto_truck.ram)
 - ABS
 - Active suspension, ESP
- The more expensive cars have more value in control electronics than in typical ME parts

Control Engineering 2004/2005 - Introduction (8)

- Air Traffic and Ships:
 - Autopilots
 - Climate control
- Process industry:
 - Temperature control
 - Flow control
 - Level control
 - Voltage and frequency control

- Mechatronics
 - an integrated and optimal design of a mechanical system and its embedded control system
 - CD player / Hard disk
 - <u>Robots</u>
 - Production machines

- Introduction to Control
- 'Classical control engineering'
 - modelling
 - simulation
 - Bode, Nyquist
 - Root locus

- Problem definition
 - What do we want to achieve?
- Construct a device, plant, process
- Formulate a clear goal
 - Realise proper 'inputs' that can help to achieve the goal
 - manipulate the inputs, such that the goal is achieved

Control Engineering 2004/2005 - Introduction (14)

- Stopping a car at a traffic light
- Goal
 - Stop in time at the white line

Control Engineering University of Twente

Control Engineering 2004/2005 - Introduction (17)

Control Engineering University of Twente

Driving school

Control Engineering 2004/2005 - Introduction (18)

Modelling

Control Engineering 2004/2005 - Introduction (19)

Modelling

(Human) Models

- Psychology
 - internal model
- Fuzzy Logic
 - membership functions
- Neural Networks
 - weights
- Classical control approach
 - differential equations

Human modelling:

- No explicit modelling of the process

Types of control

Control Engineering 2004/2005 - Introduction (23)

Example: baking a cake

- If the cake is still "rather pale" AND
- If the cake is still "a bit wet" THEN
- increase the temperature a little

Control Engineering University of Twente

Control Engineering 2004/2005 - Introduction (25)

Neural network

Table with interpolation

Table

Table with linear interpolation

Table with higher-order interpolation

A controller maps input signals to output signals

table with interpolation (fuzzy and neural)

Demonstration

Control Engineering 2004/2005 - Introduction (28)

More abstract

Desired distance

Control Engineering 2004/2005 - Introduction (29)

More abstract

Desired distance

Control Engineering 2004/2005 - Introduction (30)

Demonstration

Control Engineering 2004/2005 - Introduction (31)

More abstract

Cruise Control

Control Engineering University of Twente

Control Engineering 2004/2005 - Introduction (33)

Demonstration

Control Engineering 2004/2005 - Introduction (34)

More abstract cruise control

Control Engineering University of Twente

Control Engineering 2004/2005 - Introduction (35)

Conclusions (1)

For accurate feedback control

- high gains
- integrators

But

- high gains and integrators give lead to
 - oscillatory behaviour
 - instability

- In the examples we did not use explicit knowledge of the models
- Better performance can be achieved when we use such knowledge

P22 project (Mechatronica project) experiences: "Feedback"

Control Engineering 2004/2005 - Introduction (38)

Control Structures

Control Engineering 2004/2005 - Introduction (39)

Steering versus Control

Control Engineering University of Twente

Standard Structure

Control Engineering University of Twente

Control Engineering 2004/2005 - Introduction (41)

Standard Structure

Control Engineering University of Twente

Control Engineering 2004/2005 - Introduction (42)

Design issues

Control Engineering 2004/2005 - Introduction (43)

Design issues

Multiple views

Control Engineering University of Twente

Relations with other courses

Control Engineering University of Twente

- Electrical networks
- Dynamic Systems
- Linear Systems

Control Engineering

- All kinds of systems with feedback
- Digital Control Systems, Intelligent Control
 MSc Mechatronics
- MSc Measurement and Control Engineering

- Simulate the following controlled system for various values of *K* (multiple runs)
- Choose k = 1 and $\tau = 1$

Control Engineering 2004/2005 - Introduction (47)

- Simulate the following controlled system for various values of K_d
- Choose k = 1 and $\tau = 1$ and $K_p = 10$

Control Engineering 2004/2005 - Introduction (48)

- Simulate the following controlled system for various values of K_p
- choose k = 1 and $\tau = 1$

