
实验二 Matlab 基础知识（二）

一． 实验目的

1． 熟悉并掌握 MATLAB 的工作环境。

2． 了解 Matlab控制系统工具箱中不同命令的功能和实现。

3． 运行简单命令，实现数组及矩阵的输入输出，了解在 Matlab 下如

何绘图。

二． 实验内容

Matlab 是一种用于数值计算和数据可视化处理的交互式软件，它可以被

控制工程师用来进行控制系统地分析和设计。在 MATLAB 中，所有的控制

命令都可由简单的函数实现。对于不熟悉的命令可以通过 HELP 文件查询。

在本次实验中，主要任务是了解 Matlab 的基本命令，在 MATLAB 下如何进

行数据的输入与输出。

三． 实验步骤

具体试验步骤按如下示例进行：

VectorsVectorsVectorsVectors

Let's start off by creating something simple, like a vector. Enter each

element of the vector (separated by a space) between brackets, and set

it equal to a variable. For example, to create the vector a, enter into

the Matlab command window (you can "copy" and "paste" from your browser

into Matlab to make it easy):

a = [1 2 3 4 5 6 9 8 7]

Matlab should return:

 a =
 1 2 3 4 5 6 9 8 7

Let's say you want to create a vector with elements between 0 and 20 evenly

spaced in increments of 2 (this method is frequently used to create a time

vector):

t = 0:2:20

 t =
 0 2 4 6 8 10 12 14 16 18 20

Manipulating vectors is almost as easy as creating them. First, suppose

you would like to add 2 to each of the elements in vector 'a'. The equation

for that looks like:

b = a + 2

 b =
 3 4 5 6 7 8 11 10 9

Now suppose, you would like to add two vectors together. If the two vectors

are the same length, it is easy. Simply add the two as shown below:

c = a + b

 c =
 4 6 8 10 12 14 20 18 16

Subtraction of vectors of the same length works exactly the same way.

FunctionsFunctionsFunctionsFunctions

To make life easier, Matlab includes many standard functions. Each

function is a block of code that accomplishes a specific task. Matlab

contains all of the standard functions such as sin, cos, log, exp, sqrt,

as well as many others. Commonly used constants such as pi, and i or j

for the square root of -1, are also incorporated into Matlab.

sin(pi/4)

ans =

 0.7071

To determine the usage of any function, type help [function name] at the

Matlab command window.

Matlab even allows you to write your own functions with the function

command; follow the link to learn how to write your own functions and see

a listing of the functions we created for this tutorial.

PlottingPlottingPlottingPlotting

It is also easy to create plots in Matlab. Suppose you wanted to plot a

sine wave as a function of time. First make a time vector (the semicolon

after each statement tells Matlab we don't want to see all the values)

and then compute the sin value at each time.

t=0:0.25:7;

y = sin(t);

plot(t,y)

The plot contains approximately one period of a sine wave. Basic plotting

is very easy in Matlab, and the plot command has extensive add-on

capabilities. I would recommend you visit the plotting page to learn more

about it.

PolynomialsPolynomialsPolynomialsPolynomials

In Matlab, a polynomial is represented by a vector. To create a polynomial

in Matlab, simply enter each coefficient of the polynomial into the vector

in descending order. For instance, let's say you have the following

polynomial:

To enter this into Matlab, just enter it as a vector in the following manner

x = [1 3 -15 -2 9]

 x =
 1 3 -15 -2 9

Matlab can interpret a vector of length n+1 as an nth order polynomial.

Thus, if your polynomial is missing any coefficients, you must enter zeros

in the appropriate place in the vector. For example,

would be represented in Matlab as:

y = [1 0 0 0 1]

You can find the value of a polynomial using the polyval function. For

example, to find the value of the above polynomial at s=2,

z = polyval([1 0 0 0 1],2)

 z =
 17

You can also extract the roots of a polynomial. This is useful when you

have a high-order polynomial such as

Finding the roots would be as easy as entering the following command;

roots([1 3 -15 -2 9])

 ans =
 -5.5745
 2.5836
 -0.7951
 0.7860

Let's say you want to multiply two polynomials together. The product of

two polynomials is found by taking the convolution of their coefficients.

Matlab's function conv that will do this for you.

x = [1 2];

y = [1 4 8];

z = conv(x,y)

 z =
 1 6 16 16

Dividing two polynomials is just as easy. The deconv function will return

the remainder as well as the result. Let's divide z by y and see if we

get x.

[xx, R] = deconv(z,y)

 xx =
 1 2

 R =
 0 0 0 0

As you can see, this is just the polynomial/vector x from before. If y

had not gone into z evenly, the remainder vector would have been something

other than zero.

If you want to add two polynomials together which have the same order,

a simple z=x+y will work (the vectors x and y must have the same length).

In the general case, the user-defined function, polyadd can be used. To

use polyadd, copy the function into an m-file, and then use it just as

you would any other function in the Matlab toolbox. Assuming you had the

polyadd function stored as a m-file, and you wanted to add the two uneven

polynomials, x and y, you could accomplish this by entering the command:

z = polyadd(x,y)

 x =
 1 2

 y =
 1 4 8

 z =
 1 5 10

MatricesMatricesMatricesMatrices

Entering matrices into Matlab is the same as entering a vector, except

each row of elements is separated by a semicolon (;) or a return:

B = [1 2 3 4;5 6 7 8;9 10 11 12]

 B =
 1 2 3 4
 5 6 7 8
 9 10 11 12

B = [1 2 3 4

 5 6 7 8

 9 10 11 12]

 B =
 1 2 3 4
 5 6 7 8
 9 10 11 12

Matrices in Matlab can be manipulated in many ways. For one, you can find

the transpose of a matrix using the apostrophe key:

C = B'

 C =
 1 5 9
 2 6 10
 3 7 11
 4 8 12

It should be noted that if C had been complex, the apostrophe would have

actually given the complex conjugate transpose. To get the transpose,

use .' (the two commands are the same if the matix is not complex).

Now you can multiply the two matrices B and C together. Remember that order

matters when multiplying matrices.

D = B * C

 D =
 30 70 110
 70 174 278

 110 278 446

D = C * B

 D =
 107 122 137 152
 122 140 158 176
 137 158 179 200
 152 176 200 224

Another option for matrix manipulation is that you can multiply the

corresponding elements of two matrices using the .* operator (the matrices

must be the same size to do this).

E = [1 2;3 4]

F = [2 3;4 5]

G = E .* F

 E =
 1 2
 3 4

 F =
 2 3
 4 5

 G =
 2 6
 12 20

If you have a square matrix, like E, you can also multiply it by itself

as many times as you like by raising it to a given power.

E^3

 ans =
 37 54
 81 118

If wanted to cube each element in the matrix, just use the

element-by-element cubing.

E.^3

 ans =
 1 8

 27 64
You can also find the inverse of a matrix:

X = inv(E)

 X =
 -2.0000 1.0000
 1.5000 -0.5000

or its eigenvalues:

eig(E)

 ans =
 -0.3723
 5.3723

There is even a function to find the coefficients of the characteristic

polynomial of a matrix. The "poly" function creates a vector that includes

the coefficients of the characteristic polynomial.

p = poly(E)

p =

 1.0000 -5.0000 -2.0000

Remember that the eigenvalues of a matrix are the same as the roots of

its characteristic polynomial:

roots(p)

 ans =
 5.3723
 -0.3723

PrintingPrintingPrintingPrinting

Printing in Matlab is pretty easy. Just follow the steps illustrated

below:

Macintosh

To print a plot or a m-file from a Macintosh, just click on the plot

or m-file, select Print under the File menu, and hit return.

Windows

To print a plot or a m-file from a computer running Windows, just

selct Print from the File menu in the window of the plot or min the window of the plot or min the window of the plot or min the window of the plot or m----filefilefilefile,

and hit return.

Unix

To print a plot on a Unix workstation enter the command:

print -P<printername>

If you want to save the plot and print it later, enter the command:

print plot.ps

Sometime later, you could print the plot using the command "lpr -P

plot.ps" If you are using a HP workstation to print, you would

instead use the command "lpr -d plot.ps"

To print a m-file, just print it the way you would any other file,

using the command "lpr -P <name of m-file>.m" If you are using a

HP workstation to print, you would instead use the command "lpr -d

plot.ps<name of m-file>.m"

Using MUsing MUsing MUsing M----files in Matlabfiles in Matlabfiles in Matlabfiles in Matlab

There are slightly different things you need to know for each platform.

Macintosh

There is a built-in editor for m-files; choose "New M-file" from

the File menu. You can also use any other editor you like (but be

sure to save the files in text format and load them when you start

Matlab).

Windows

Running Matlab from Windows is very similar to running it on a

Macintosh. However, you need to know that your m-file will be saved

in the clipboard. Therefore, you must make sure that it is saved

as filename.m

Unix

You will need to run an editor separately from Matlab. The best

strategy is to make a directory for all your m-files, then cd to

that directory before running both Matlab and the editor. To start

Matlab from your Xterm window, simply type: matlab.

You can either type commands directly into matlab, or put all of the

commands that you will need together in an m-file, and just run the file.

If you put all of your m-files in the same directory that you run matlab

from, then matlab will always find them.

Getting help in MatlabGetting help in MatlabGetting help in MatlabGetting help in Matlab

Matlab has a fairly good on-line help; type

help commandname

for more information on any given command. You do need to know the name

of the command that you are looking for; a list of the all the ones used

in these tutorials is given in the command listing; a link to this page

can be found at the bottom of every tutorial and example page.

Here are a few notes to end this tutorial.

You can get the value of a particular variable at any time by typing its

name.

 B

 B =
 1 2 3
 4 5 6
 7 8 9

You can also have more that one statement on a single line, so

long as you separate them with either a semicolon or comma.

Also, you may have noticed that so long as you don't assign a

variable a specific operation or result, Matlab with store it

in a temporary variable called "ans".

四．实验报告

1．综述 Matlab 基本输入输出命令的功能；

2．简述在 MATLAB 下如何输出图形，如何查询未知函数。

