文章编号: 1000-0364(2005)03-0419-06

类氢离子基态超精细结构的理论研究

罗月娥¹,董晨钟^{1,2**},丁晓彬¹

(1. 西北师范大学物理与电子工程学院,兰州 730070; 2. 兰州重离子加速器国家实验室原子核理论中心,兰州 730000)

摘 要:利用相对论多组态 Dirac⁻ Fock 方法,系统计算了类氢离子¹⁶⁵ Ho⁶⁶⁺,¹⁸⁵ Re⁷⁴⁺,¹⁸⁷ Re⁷⁴⁺,²⁰⁷ Pb⁸¹⁺, ²⁰⁹Bi⁸²⁺,²⁰³ TI⁸⁰⁺和²⁰⁵ TI⁸⁰⁺的基态超精细结构分裂以及相应的基态跃迁波长,并与相关实验数据及其它 理论结果进行了对比。 关键词:核自旋;磁偶极矩;电四极矩;超精细结构 中图分类号: O562.1 文献标识码:A

Theoretical Study on hyperfine splitting of ground state of hydrogenlike ions

LUO Yue- e^1 , DONG Chen-zhong^{1,2}, DING Xiao-bin¹

(1. College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, P. R. China;

2. Center of Theoretical Nuclear Physics , National Laboratory of Heavy Ion Accelerator of Lanzhou , Lanzhou 730070 , P. R. China)

Abstract : The hyperfine structures of the ground state of the hydrogenlike ions 165 Ho ${}^{66+}$, 185 Re ${}^{74+}$, 187 Re ${}^{74+}$, 207 Pb ${}^{81+}$, 209 Bi ${}^{82+}$, 203 TI ${}^{80+}$ and 205 TI ${}^{80+}$ have been calculated in detail with the help of the multi-configuration Dirac-Fock method. A good agreement is found comparing the hyperfine splitting of the ground state and the corresponding wavelength with previous experiments and other theories.

Key words: Nuclear spin; Magnetic dipole moment; Electric quadrupole moment; Hyperfine structure

1 引言

原子物理和原子核物理是物理学中两个相对 独立的学科,具有不同的特点和研究内容。原子的 超精细结构光谱涉及核外电子和核两方面的性质, 因此超精细结构的测量与预言不仅能够提供原子 物理和原子核物理两个领域的信息,而且也能为研 究原子核特性提供非常有用的工具。1930年, Fermi 通过 Cs 和 Na 的超精细结构推导出其相应 的核磁动量的值,就是一个很好的例子^[1]。尽管 原子的超精细结构光谱的研究已有七十多年的历 史,但由于其在量子电动力学理论的检验、原子频 标以及激光分离同位素等理论和应用方面的重要 意义,直到目前超精细结构能谱的研究仍然是一个 活跃的领域。

原子核具有一定的几何大小,核电荷是按一定 的方式分布的,同时原子核还有自旋角动量 I 和磁 矩µ。原子核的这些性质对电子的运动产生的直 接影响是使原子光谱在精细结构基础上进一步分

^{*} 收稿日期:2004-09-21 基金项目:教育部优秀青年教师资助计划项目,国家自然科学基金(批准号:10274062,10376026,10434100);兰州重离子加速器国家 实验室原子核理论中心基金及西北师范大学科技创新工程项目(批准号:NWNU—KJCXGC-214)资助课题。 作者简介:罗月娥(1980-),女,汉,甘肃临洮人,西北师范大学物理与电子工程学院2003级研究生,主要研究方向为原子结构和原

作者简介: 罗月娥(1980-), 女, 汉, 日肃临洮人, 四北师氾大学物理与电于工程字院 2003 级研究生, 王安研究方向为原于结构和原子光谱。

^{**} 通讯联系人:董晨钟, E-mail: dongcz @nwnu. edu. cn

420

裂 ,形成超精细结构。 近十年来 ,激光器技术和计 算机技术的飞速发展 ,大大推动了这方面的实验与 理论研究进展。许多小组开展了超精细结构的实 验测量,如L.Bomstron等人利用快离子束-激光光 谱学方法对 Xe 的超精细结构光谱的测量^[2], Childs 等人利用原子束-激光-射频双共振光谱对中 性稀土元素¹⁵⁹ Tb,^{161,163} Dy 和⁶⁹ Tm 激发态 4f^N6s² 组态的超精细结构的测量等[3]。从 1994 年起,人 们进一步对一些高离化态离子进行了测量,尤其是 类氢离子的超精细结构。其主要原因有两个,一是 因为随着实验技术的改进,人们已经能够获得元素 周期表中几乎所有元素的各种离化态的离子,直至 "裸核"。二是因为在类氢离子的等电子序列中、由 于单电子离子的简单性、我们可以很好理解理论模 型和解释实验数据,而且实验的精确度非常高,因 此对类氢离子来说,基态的超精细结构分裂成为可 以精确测量的物理特性之一。到目前为止,实验上 观测过的类氢离子的超精细结构包括¹⁶⁵ Ho⁶⁶⁺, 185 Re^{74 +}, 187 Re^{74 +}, 207 Pb^{81 +}, 209 Bi^{82 +}, 203 TI^{80 +}和 ²⁰⁵ TI⁸⁰⁺离子^[4~8]。与此同时,人们也在相对论性 多体微扰理论,组态相互作用及 MCDF 方法等理 论框架下,发展起来了多种处理超精细结构的理论 方法。利用这些方法,人们在超精细结构方面作了 许多工作。S.A. Blundell 等人利用相对论性多体 微扰理论对⁷Li 和⁹Be⁺ 的超精细结构进行了计 算^[9] 芶秉聪等人利用组态相互作用理论对类铍 离子硼和碳的原子实激发态⁵ $P(n)(n = 1 \sim 7)$ 和 ${}^{5}S^{0}(m)(m=1\sim5)$ 的超精细结构进行了计算^[10], J. Bieron 等人利用 MCDF 方法对类锂离子 Be⁺和 F⁶⁺的超精细结构常量进行了计算等^[11]。

本文利用相对论多组态 Dirac-Fock (MCDF) 方 法, 对 类 氢 的 ¹⁶⁵ Ho⁶⁶⁺, ¹⁸⁵ Re⁷⁴⁺, ¹⁸⁷ Re⁷⁴⁺, ²⁰⁷Pb⁸¹⁺, ²⁰⁹Bi⁸²⁺, ²⁰³ TI⁸⁰⁺和²⁰⁵ TI⁸⁰⁺离子的基态 超精细结构分裂进行了进一步计算,并与相关实验 数据及其它理论结果进行了对比。

2 理论方法

正如电子的自旋与轨道运动相互作用产生精 细结构一样,超精细结构是核的自旋与电子的总角 动量耦合的结果。因为核自旋对能级的影响比电 子自旋小的多,所以这种能级分裂比精细结构情形 要小的多。 设核的自旋角动量为 P_I ,电子的总角动量为 P_i ,则二者耦合而成的原子的总角动量 P_F 为:

$$P_F = P_I + P_j \tag{1}$$

其中, P_F 的大小为 $P_F = \sqrt{F(F+1)}$ ħ, F可取下 列数值:

$$F = I + j, I + j - 1, ..., / I - j /$$
(2)

如果 j *I*, *F*有 2*I* + 1 个值; 如果 *I j*, *F*有 2*j* + 1 个值。不同 *F*值的能级具有不同的能量, 于是 原来给定 *j*值的能级又分裂成 2*I* + 1 或 2*j* + 1 个 具有不同 *F*值的子能级。当然这些子能级之间的 距离, 比不同 *j*值的能级之间的距离小的多, 从而 形成了原子光谱的超精细结构。

根据量子力学的原理,超精细相互作用的哈密 顿一般可以写为张量形式:

$$H_{hfs} = \prod_{k=1}^{(k)} \mathbf{T}^{(k)} \cdot \mathbf{M}^{(k)}$$
(3)

 $T^{(k)}$ 和 $M^{(k)}$ 分别是电子和原子核部分的 *K* 级球形 张量算符, k = 1 时表示磁偶极相互作用, k = 2 时 表示电四极矩作用, 而高阶相互作用(k = 3), 理论 上预言要小八个量级, 所以可以忽略不计。

电子的张量算符 **T**^(k) 可以写为单粒子张量算符之和:

$$\mathbf{\Gamma}^{(k)} = \prod_{j=1}^{N} \mathbf{t}^{(k)}(j) , k = 1, 2$$
(4)

在相对论表象中,磁偶极算符 $\mathbf{t}^{(1)}$ 的形式为:

$$\mathbf{t}^{(1)} = -i \int_{i=1}^{N} (i) \cdot \mathbf{l}(i) \cdot \mathbf{C}^{(1)}(i) r^{-2}(i)$$
(5)

电四极算符 $\mathbf{t}^{(2)}$ 为:

$$\mathbf{t}^{(2)} = -\sum_{i=1}^{N} \mathbf{C}^{(2)}(i) r^{-3}(i)$$
(6)

在上两式中, 是精细结构常量, 是 Dirac 矩阵矢 量, l 是轨道角动量算符, $C^{(k)}$ 是一个与球谐函数有 关的球形张量, 其分量可以表示为:

$$C_q^{(k)} = \sqrt{\frac{4}{2k+1}} Y_{kq}$$
(7)

磁偶极和电四极矩的作用能量可以用哈密顿 量的矩阵元来计算:

$$W_{M1}(J,J) = {}_{I J} J F M_{F} / T^{(1)} M^{(1)} / {}_{I J} J F M_{F} , J = J, J - 1$$
(8)

$$W_{E2}(J,J) = {}_{I J}IJFM_{F}/T^{(2)}M^{(2)}/{}_{I J}IJFM_{F}, J = J,J-1,J-2$$
(9)

(8) 式和(9) 式中:

$$/ I_J IJ FM_F = IJM_IM_J / IJ F M_F / IM_I / JM_J$$
(10)

是整个系统的耦合波函数,它包括了原子核波函数和电子波函数两个部分。因为 **T**^(k) 只作用在电子部分, 而 **M**^(k) 只作用在原子核部分,所以(8)、(9) 式可以写为:

$$W_{M1}(J,J) = {}_{FMF,FMF}(-1)^{J+I+F} \begin{cases} J & I & F \\ I & J & 1 \end{cases} {}_{J}JM_{J} T^{(1)} {}_{J}JM_{J} I^{I}M_{I} M^{(1)} {}_{I}IM_{I} \end{cases}$$
(11)

$$W_{E2}(J,J) = {}_{FMF, FMF}(-1)^{J+I+F} \begin{cases} J & I & F \\ I & J & 2 \end{cases} {}_{J}JM_{J} T^{(2)} {}_{J}JM_{J} {}_{I}IM_{I} M^{(2)} {}_{I}IM_{I} \end{cases} {}_{I}IM_{I} M^{(2)} {}_{I}IM_{I}$$
(12)

其中,与原子核张量算符 $\mathbf{M}^{(k)}$ 有关的矩阵元是与磁偶极力矩 μ_l 和电四极力矩 \mathcal{Q}_l 相联系的 :

$$\mu_{I} = {}_{I}IM_{I} / M_{0}^{(1)} / {}_{I}IM_{I} = \begin{bmatrix} I & 1 & I \\ - & I & 0 & I \end{bmatrix} {}_{I}IM_{I} M^{(1)} {}_{I}IM_{I}$$
(13)

$$\frac{1}{2}Q_{I} = IM_{I} / M_{0}^{(2)} / IM_{I} = \begin{bmatrix} I & 2 & I \\ -I & 0 & I \end{bmatrix} IM_{I} M^{(2)} IM_{I}$$
(14)

而与电子部分相关的矩阵元可以用 *M CD F* 方法计算。在这个方法中,体系波函数可以写为组态波函数/ *JM*,的叠加,即

$$/ JM_J = c_r / JM_J \qquad (15)$$

对于一个 N 电子系统,组态波函数由所有单电子 自旋轨道波函数:

$$r / nkm = \frac{1}{r} \left(\begin{array}{cc} P_{nk}(r) & _{km}(\hat{r}) \\ iQ_{nk}(r) & _{-km}(\hat{r}) \end{array} \right)$$
(16)

所构成的 N 阶 Slater 行列式波函数线性组合而成。 在此 n 是主量子数, k 是相对论角量子数, 由于 $l = j \pm 1/2$,则 $k = \pm (j + 1/2) \circ P_{nk}(r)$ 和 $Q_{nk}(r)$ 分 别为径向波函数的大小分量, $_{km}(\hat{r})$ 为 lsj 耦合表 象中的自旋球谐波函数,表达式为:

$$_{km}(\uparrow) = lm - \frac{1}{2} / l\frac{1}{2}jm \times Y_{lm}$$
 (,) () (17)

这样,根据(15)、(16) 式电子部分的约化矩阵元可 简化为 ^[12]

$$_{J}M_{J}$$
 $T^{(k)}$ $_{J}M_{J}$

$$= \int_{a,b} d^{k}_{ab}(rs) n_{a}k_{a} t^{(k)} n_{b}k_{b}$$
(18)

而单粒子约化矩阵元又可以进一步被简化为一个 角向矩阵元和一个径向积分的乘积,即:

$$n_{a}k_{a} \quad t^{(1)} \quad n_{b}k_{b} = - (k_{a} + k_{b}) \times \\ - k_{a} \quad C^{(1)} \quad k_{b} \quad \times \\ [r^{-2}] n_{a}k_{a}n_{b}k_{b} \quad (19)$$

$$n_a k_a t^{(2)} n_b k_b$$

= - $k_a C^{(2)} k_b r^{-3} n_a k_a n_b k_b$ (20)

在(19) 和(20) 式中,

$$k \quad C^{(k)} \quad k = (-1)^{j-k-1/2} (2j + 1)^{1/2} \times \begin{pmatrix} j & j & k \\ 1 & -1 & 2 \\ 2 & -1 & 2 \end{pmatrix} \quad (l, k, l)$$
(21)

$$(l, k, l) = \begin{cases} 1 & \text{if } l + k + l \text{ even} \\ 0 & \text{otherwise} \end{cases}$$
(22)

$$[r^{2}]_{nkn k} = r^{2} [P_{nk}(r) Q_{n k}(r) + Q_{nk}(r) P_{n k}(r)] dr \qquad (23)$$

$$r^{-3}_{nkn\ k} = r^{-3} [P_{nk}(r) P_{n\ k}(r) + Q_{nk}(r) Q_{n\ k}(r)] dr \qquad (24)$$

3 结果与讨论

422

本文主要计算了类氢离子¹⁶⁵Ho⁶⁶⁺,¹⁸⁵Re⁷⁴⁺, ¹⁸⁷Re⁷⁴⁺,²⁰⁷Pb⁸¹⁺,²⁰⁹Bi⁸²⁺,²⁰³TI⁸⁰⁺和²⁰⁵TI⁸⁰⁺的基 态超精细结构,得到了基态超精细结构分裂能量 *E*,以及相应的基态跃迁波长,并且与相关的实验 数据进行了比较。下面给出这些元素的计算结果。

从表 1 中可以看到,我们目前计算得到的基态 超精细分裂能以及相应跃迁波长与实验相比一致 性比较好,除了²⁰⁷ Pb^{81+} 在 $\mu_I = 0.592583 \mu_N$ 的情 况之外,相对误差大约在 1 % 到 3 % 之间。

经过分析得到,目前的计算和实验的主要误差 是因为没有考虑 Bohr Weisskopf 效应。这种效应是 由于核磁矩的分布引起的,因为缺少核的波函数方 面的知识,所以目前对这种效应并不能精确计算。

在类氢离子中,核自旋 I 和总电子角动量 J = 1/2 的耦合使基态能级分裂成两个 F 能级 : F = I + J, I - J。这两个相邻能级间的能级差可以表示 为⁽¹⁶⁾:

$$E = \frac{\frac{4}{2}Z^{3}}{n^{3}} \frac{\mu_{I}}{I} \frac{m_{e}}{m_{p}} \frac{(I+j)}{j(j+1)} \frac{m_{e}c^{2}}{(2l+1)} \times \frac{[A(1-j)(1-j)+m_{e}c^{2}]}{[A(1-j)(1-j)+m_{e}c^{2}]}$$
(25)

其中, 为精细结构常数, Z 为核电荷数, n 为主量 子数, l, j 分别是轨道和总角动量量子数, μ_l 为核 磁力矩, m_e , m_p 分别为电子, 质子质量, I 为核自旋 量子数, A 为相对论修正因子, 为核电荷分布修 正因子, 为核磁化分布 (Bohr-Weisskopf) 修正因 子, rad 为 QED 辐射修正。而在本文计算过程中, 我们在相对论理论框架下考虑了 QED 辐射效应 (自能和真空极化修正)、核的尺寸效应(核电荷分 布 修 正), 但 是 没 有 考 虑 核 磁 化 分 布 (Bohr-Weisskopf) 修正,所以我们认为这是目前的 计算结果与实验相比误差较大的主要原因。

为了给出更加精确的超精细结构分裂能,我们 对计算结果进行了进一步修正。下面给出修正后的 结果以及与实验和其它理论结果的比较。

从表 2 中可以看到,如果不包括 BW 修正,那 么目前的计算值 Euncorr和其它理论值比较接近, 这说明我们的计算除了没有考虑 BW 修正之外都 是正确的。而经过修正后,理论值和实验值符合的 很好。对于 BW 修正,人们做了大量的计算,但是 在不同的模型下,得到的计算结果并不相 同^[5,20~22]。本文所采用的 BW 修正值大部分来自 于文献[17]。该文中,作者计算时所构造的模型比 较简单,核磁矩的分布采用的是 Fermi 分布(Z> 45)和均匀球形分布(Z 45),而且认为核磁矩平 均分布半径与电荷分布半径相同。虽然有时侯文 献[17]对计算结果的修正并不是非常好,例如:对 于²⁰⁷Pb⁸¹⁺来说,这里用文献[6]、[18]来修正要比 用文献[17]好的多,但是大部分情况下这种修正还 是可靠的。从表 1、表 2 中还可以看到.核磁矩 μ_r 的取值对计算结果的影响非常大,例如:对于 ¹⁶⁵Ho⁶⁶⁺来说,当核磁力矩选用4.1325µ_N时,计算 结果与实验符合的更好 ,因此在计算超精细结构时 我们需要实验上提供更加精确的核磁力矩值。

Ions		$\mu_I (\mu_N)$	Ε	(eV)		Ralative	
	Ι		This work	Experiment	This work	Experiment	Error
¹⁶⁵ Ho ^{66 +}	3.5	4.132(5) ^[13]	2.19605	2.1645(6) ^[4]	564.58	572.64 ±0.15	1.41 %
		4.173(27) ^[14]	2.2169		559.27		2.42 %
$^{185}\mathrm{Re}^{74}$ +	2.5	3.1871(3) ^[13]	2.7981	2.7190(18) ^[5]	443.10	456.05 ±0.3	2.83 %
$^{187}\mathrm{Re}^{74}$ +	2.5	3.2197(3) ^[13]	2.8262	2.7450(18) ^[5]	438.70	451.69 ±0.3	2.87 %
$^{207}{\rm Pb}^{81+}$	0.5	0.58219(2) ^[14]	1.2522	1.2159(2) ^[6]	990.13	1019.7(2)	2.85 %
		0. 592583 ^[14]	1.2746		972.73		4.83 %
$^{209}{\rm Bi}^{82+}$	4.5	4.1106(2) ^[14]	5.1887	5.0840(8) ^[7]	238.95	243.87(1)	2.06 %
$^{203}\mathrm{TI}^{80+}$	0.5	1.6217(13) ^[15]	3.3024	3.21351(25) ^[8]	375.44	385.82 ±0.03	2.69 %
²⁰⁵ TI ^{80 +}	0.5	1.6379(13) ^[15]	3.3354	3.24409(29) ^[8]	371.72	382.18 ±0.03	2.81 %

表 1 目前计算得到的基态超精细分裂能(E)和相应跃迁波长()以及与实验的比较 Table 1 Hyperfine splitting energy E and the corresponding wavelength

Ions	E_{exp}	Method	$\mu_I [\mu_N]$	$E_{\rm uncorr}$	$E_{\rm BW}$	$E_{\rm corr}$	$E_{\rm corr}$ - $E_{\rm exp}$
¹⁶⁵ Ho ⁶⁶⁺	2.1645(6)	This work	4.132(5)	2.19605	- 0.0247 ^[19]	2.17135	0.0068
		Ref. [4]	4.132(5)			2.1675	0.0030
		Ref. [18]	4.132(5)	2.1854	- 0.0195	2.1659(55)	0.0014
		This work	4.173(27)	2.2169	- 0.0249 [17]	2.1920	0.0275
		Ref. [4]	4.173(27)			2.1888	0.0243
$^{185}\mathrm{Re}^{74}$ +	2.719(18)	This work	3.1871(3)	2.7981	- 0.0429[17]	2.7552	0.0362
		Ref. [18]	3.1871(3)	2.7831	- 0.0341	2.749(10)	0.0300
$^{187}\mathrm{Re}^{74}$	2.745(18)	This work	3.2197(3)	2.8262	0.0434 [17]	2.7828	0.0378
$^{207}{\rm Pb}^{81}$ +	1.2159(2)	This work	0.58219(2)	1.2522	- 0.0400[6]	1.2122	- 0.0037
		Ref. [17]	0.58219(2)	1.2460	- 0.0252	1.2208	0.0049
		This work	0. 592583	1.2746	- 0.0534 [18]	1.2212	0.0053
		Ref. [17]	0. 592583	1.2684	- 0.0257	1.2427	0.0268
		Ref. [19]	0. 592583	1.2687	- 0.0340	1.2347	0.0188
²⁰⁹ Bi ^{82 +}	5.0840(8)	This work	4.1106(2)	5.1887	- 0.1087[17]	5.0800	- 0.0040
		Ref. [20]	4.1106(2)	5.1622	- 0.0612	5.101(27)	- 0.0170
		Ref. [21]	4.1106(2)	5.1650	- 0.107(7)	5.058(8)	- 0.0260
$^{203}TI^{80+}$	3.21351(25)	This work	1.6217(13)	3.3024	- 0.06491 ^[17]	3.23749	0.02398
$^{205}TI^{80+}$	3.24409(29)	This work	1.6379(13)	3.3354	$0.065655^{[17]}$	3.269745	0.02565

表 2	考	虑BW	修正后	得到的	基态超精	青细结	构分裂	能与实	、验以 及	及其它現	里论结身	限的比较
Ta ble	2	Comp	arison	bet ween	different	t theor	etical	hyperf i	ne split	ting en	ergies a	nd
		exper	imental	results	with the	BW co	orrectio	ons				

4 结论

本文在全相对论理论框架下,计算了类氢的 165 Ho⁶⁶⁺, 185 Re⁷⁴⁺, 187 Re⁷⁴⁺, 207 Pb⁸¹⁺, 209 Bi⁸²⁺, ²⁰³ TI⁸⁰⁺和²⁰⁵ TI⁸⁰⁺离子的基态超精细结构。由于 没有考虑核磁化分布(Bohr-Weisskopf)修正,最初 的计算结果和实验相比,相对误差大约在1%到 3%之间。但是当我们对计算结果进行 BW 修正 后,精度大大地提高了,与实验符合的非常好,由此 也证明了本文中所用方法的正确性。对于 BW 修 正,人们做了大量的计算,但是在不同的模型下,得 到的计算结果并不相同(变化大约在10%~50% 之间)。正是由于我们缺少"核磁分布"方面的知 识,所以计算的精确度受到了限制。在计算超精细 结构时,除了前面我们所提到的各种效应之外,核 磁矩 的精确度直接影响着超精细结构计算结果的 精确度。因此我们希望实验上能够提供更加精确 的实验数据,以便使理论计算更加精确。此外,我 们所提供的超精细分裂能也会对理论上推导核磁 力矩、核电荷分布以及核磁化分布等有所帮助。

参考文献:

- Fermi E, über die magnetischen momente der atomkerne
 Z. Phys. ,1930 ,60 :320.
- [2] Brostrom L, Kastberg A, Lidberg J, et al. Measurement of hyperfine structure in Xe [J]. Phys. Rev., 1996, A53:109~111.
- [3] Childs W J, et al. Hyperfine Structures of ¹⁵⁹ Tb, ^{161,163}Dy, and ¹⁶⁹ Tm [J].J. Opt. Soc. Am., 1984, B1:22
 ~ 26.
- [4] L $\oint ez$ -Urrutia J R C, Beiersdorfer P, Savin D W, *et al.* Direct observation of the spontaneous emission of the hyperfine transition F = 4 to F = 3 in ground state hydrogenlike ¹⁶⁵ Ho⁶⁶⁺ in an electron beam ion trap [J] . Phys. Rev. Lett. ,1996,77:826~829.
- [5] L φez-Urrutia J R C, Beiersdorfer P, Widmann K, et al. Nuclear magnetization distribution radii determined by hyperfine transiton in the 1s level of H-like ions ¹⁸⁹Re⁷⁴⁺ and ¹⁸⁷Re⁷⁴⁺ [J]. Phys. Rev., 1998, A57:879 ~ 887.
- [6] Seeling P, Borneis S, Dax A, et al. Gound state hyperfine splitting of hydrogenlike ²⁰⁷ Pb⁸¹⁺ by laser excitation of a bunched ion beam in the GSI experimental storage ring [J]. Phys. Rev. Lett., 1998, 81: 4824 ~ 4827.

- [7] Klaft I, Borneis S, Engel T, et al. Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike ²⁰⁹ Bi⁸²⁺ [J]. Phys. Rev. Lett., 1994, 73: 2425 ~ 2427.
- [8] Beiersdorfer P, Utter S B, Wong KL, et al. Hyperfine structure of hydrogenlike thallium isotopes [J]. Phys. Rev. ,2001, A64:032506(1~6).
- [9] Blundell S A, Johnson W R, Liu Z W, et al. Relativistic all-order calculations of energies and matrix elements for Li and Be⁺ [J]. Phys. Rev. ,1989,A40:2233~2246.
- [10] Gou B C and Wang F. Relativistic energy, fine structure, hyperfine structure of the high-lying coreexcited states ${}^{5}P(n)$ ($n = 1 \sim 7$) and ${}^{5}S^{0}(m)$ (m = 1~ 5) for Be-like boron and carbon [J]. Phys. Rev., 2004,A69:042513.
- [11] Bieron J , Jönsson P , FischerC F. Effects of electron correlation, relativity, and nuclear structure on hyperfine constants of Be⁺, and F⁶⁺ [J]. Phys. Rev., 1999, A60:3547 ~ 3557.
- [12] Pyper N C, Grant I P, Beatham N. A new program for calculating matrix elements of one-particle operators in jj-coupling [J]. Comput. Commun. ,1978, 15:387.
- [13] Firestone R, et al. Table of Isotopes [M]. 8th ed., edited by V. S. Shirley, New York: Wiley, 1996. Appendix E.
- [14] Raghavan P. At. Data Nucl. Data Tables [J]. 1989, 42:189.

- [15] Gustavsson M G H and Martensson-Pendrill A M. Need for remeasurement of nuclear magnetic dipole moments
 [J]. Phys. Rev. 1998, A58:3611.
- [16] Shabaev V M. Hyperfine structure of hydrogenlike ions[J]. J. Phys. ,1994, B27:5825~5832.
- [17] Boucard S, Indelicato P. Relativistic many-body and QED effects on the hyperfine structure of lithium-like ions [J]. Eur. Phys. J. ,2000, D8:59~73.
- [18] Shabaev V M, Tomaselli M, Kühl T, et al. Ground-state hyperfine splitting of high Z hydrogenlike ions
 [J]. Phys. Rev., 1997, A56:252 ~ 255.
- [19] Persson H, Schneider S M, Greiner W, et al. Selfenergy correction to the hyperfine structure splitting of hydrogenlike atoms [J]. Phys. Rev. Lett. ,1996,76: 1433 ~ 1436.
- [20] Tomaselli M, Schneider S M, Kankeleit E, et al. Ground state magnetization of ²⁰⁹ Bi in a dynamic correlation model [J]. Phys. Rev. ,1995, C51:2989 ~ 2997.
- [21] Labzowsky L N, Johnson W R, Soff G, et al. Dynamic proton model for the hyperfine structure of the hydrogenlike ion ²⁰⁹Bi⁸²⁺ [J]. Phys. Rev. ,1995, A51: 4597 ~ 4602.
- [22] Shabaev V M, Shabaeva M B, Tupitsyn I I, et al. Transition energy and lifetime for the ground-state hyperfine splitting of high-Z lithiumlike ions [J]. Phys. Rev., 1998, A57:149~156.