
实验五  频率响应法的控制系统设计  

一． 实验目的 

1． 熟悉并掌握 MATLAB 的工作环境。 

2． 了解频率响应法的控制的基本理论。 

3． 在 MATLAB 工作环境下，选择适当的例子，实现频率响应法控制，

讨论控制效果。 

二． 实验内容 

The frequency response method may be less intuitive than other methods 

you have studied previously. However, it has certain advantages, 

especially in real-life situations such as modeling transfer functions 

from physical data.  

The frequency response of a system can be viewed two different ways: via 

the Bode plot or via the Nyquist diagram. Both methods display the same 

information; the difference lies in the way the information is presented. 

We will study both methods in this tutorial.  

The frequency response is a representation of the system's response to 

sinusoidal inputs at varying frequencies. The output of a linear system 

to a sinusoidal input is a sinusoid of the same frequency but with a 

different magnitude and phase. The frequency responsefrequency responsefrequency responsefrequency response is defined as the 

magnitude and phase differences between the input and output sinusoids. 

In this tutorial, we will see how we can use the open-loop frequency 

response of a system to predict its behavior in closed-loop.  

To plot the frequency response, we create a vector of frequencies (varying 

between zero or "DC" and infinity) and compute the value of the plant 

transfer function at those frequencies. If G(s) is the open loop transfer 

function of a system and w is the frequency vector, we then plot G(j*w) 

vs. w. Since G(j*w) is a complex number, we can plot both its magnitude 

and phase (the Bode plot) or its position in the complex plane (the Nyquist 

plot). More information is available on plotting the frequency response.  



Bode Plots Bode Plots Bode Plots Bode Plots     

As noted above, a Bode plot is the representation of the magnitude and 

phase of G(j*w) (where the frequency vector w contains only positive 

frequencies). To see the Bode plot of a transfer function, you can use 

the Matlab bode command. For example,  

 bode(50,[1 9 30 40]) 

displays the Bode plots for the transfer function:  

 

  50 

   ----------------------- 

   s^3 + 9 s^2 + 30 s + 40 

 

Please note the axes of the figure. The frequency is on a logarithmic scale, 

the phase is given in degrees, and the magnitude is given as the gain in 

decibels.  

Note: a decibel is defined as 20*log10 ( |G(j*w| ) Note: a decibel is defined as 20*log10 ( |G(j*w| ) Note: a decibel is defined as 20*log10 ( |G(j*w| ) Note: a decibel is defined as 20*log10 ( |G(j*w| )     

Click here to see a few simple Bode plots.  

Gain and Phase Margin Gain and Phase Margin Gain and Phase Margin Gain and Phase Margin     

Let's say that we have the following system:  



 

where K is a variable (constant) gain and G(s) is the plant under 

consideration. The gain margingain margingain margingain margin is defined as the change in open loop gain 

required to make the system unstable. Systems with greater gain margins 

can withstand greater changes in system parameters before becoming 

unstable in closed loop.  

Keep in mind that unity gain in magnitude is equal to a gain of zero in Keep in mind that unity gain in magnitude is equal to a gain of zero in Keep in mind that unity gain in magnitude is equal to a gain of zero in Keep in mind that unity gain in magnitude is equal to a gain of zero in 

dB.dB.dB.dB. 

The phase margin phase margin phase margin phase margin is defined as the change in open loop phase shift required 

to make a closed loop system unstable.  

The phase margin also measures the system's tolerance to time delay. If 

there is a time delay greater than 180/Wpc in the loop (where Wpc is the 

frequency where the phase shift is 180 deg), the system will become 

unstable in closed loop. The time delay can be thought of as an extra block 

in the forward path of the block diagram that adds phase to the system 

but has no effect the gain. That is, a time delay can be represented as 

a block with magnitude of 1 and phase w*time_delay (in radians/second).  

For now, we won't worry about where all this comes from and will 

concentrate on identifying the gain and phase margins on a Bode plot:  

The phase margin is the difference in phase between the phase curve and 

-180 deg at the point corresponding to the frequency that gives us a gain 

of 0dB (the gain cross over frequency, Wgc). Likewise, the gain margin 

is the difference between the magnitude curve and 0dB at the point 

corresponding to the frequency that gives us a phase of -180 deg (the phase 

cross over frequency, Wpc).  



 

One nice thing about the phase margin is that you don't need to replot 

the Bode in order to find the new phase margin when changing the gains. 

If you recall, adding gain only shifts the magnitude plot up. This is the 

equivalent of changing the y-axis on the magnitude plot. Finding the phase 

margin is simply the matter of finding the new cross-over frequency and 

reading off the phase margin. For example, suppose you entered the command 

bode(50,[1 9 30 40]). You will get the following bode plot:  

 

You should see that the phase margin is about 100 degrees. Now suppose 

you added a gain of 100, by entering the command bode(100*50,[1 9 30 40]). 

You should get the following plot (note I changed the axis so the scale 

would be the same as the plot above, your bode plot may not be exactly 

the same shape, depending on the scale used):  



 

As you can see the phase plot is exactly the same as before, and the 

magnitude plot is shifted up by 40dB (gain of 100). The phase margin is 

now about -60 degrees. This same result could be achieved if the y-axis 

of the magnitude plot was shifted down 40dB. Try this, look at the first 

Bode plot, find where the curve crosses the -40dB line, and read off the 

phase margin. It should be about -60 degrees, the same as the second Bode 

plot.  

We can find the gain and phase margins for a system directly, by using 

Matlab. Just enter the margin command. This command returns the gain and 

phase margins, the gain and phase cross over frequencies, and a graphical 

representation of these on the Bode plot. Let's check it out:  

 margin(50,[1 9 30 40]) 

 



BandwBandwBandwBandwidth Frequencyidth Frequencyidth Frequencyidth Frequency    

The bandwidth frequency is defined as the frequency at which the 

closedclosedclosedclosed----looplooplooploop magnitude response is equal to -3 dB. However, when we design 

via frequency response, we are interested in predicting the closed-loop 

behavior from the open-loop response. Therefore, we will use a 

second-order system approximation and say that the bandwidth frequency 

equals the frequency at which the openopenopenopen----loop loop loop loop magnitude response is between 

-6 and - 7.5dB, assuming the open loop phase response is between -135 deg 

and -225 deg. For a complete derivation of this approximation, consult 

your textbook.  

If you would like to see how the bandwidth of a system can be found 

mathematically from the closed-loop damping ratio and natural frequency, 

the relevant equations as well as some plots and Matlab code are given 

on our Bandwidth Frequency page.  

In order to illustrate the importance of the bandwidth frequency, we will 

show how the output changes with different input frequencies. We will find 

that sinusoidal inputs with frequency less than Wbw (the bandwidth 

frequency) are tracked "reasonably well" by the system. Sinusoidal inputs 

with frequency greater than Wbw are attenuated (in magnitude) by a factor 

of 0.707 or greater (and are also shifted in phase).  

Let's say that we have the following closed-loop transfer function 

representing a system:  

1 

--------------- 

s^2 + 0.5 s +  1 

First of all, let's find the bandwidth frequency by looking at the Bode 

plot:  

bode (1, [1 0.5 1 ]) 



 

Since this is the closed-loop transfer function, our bandwidth frequency 

will be the frequency corresponding to a gain of -3 dB. looking at the 

plot, we find that it is approximately 1.4 rad/s. We can also read off 

the plot that for an input frequency of 0.3 radians, the output sinusoid 

should have a magnitude about one and the phase should be shifted by 

perhaps a few degrees (behind the input). For an input frequency of 3 

rad/sec, the output magnitude should be about -20dB (or 1/10 as large as 

the input) and the phase should be nearly -180 (almost exactly 

out-of-phase). We can use the lsim command to simulate the response of 

the system to sinusoidal inputs.  

First, consider a sinusoidal input with a frequency lower than Wbwfrequency lower than Wbwfrequency lower than Wbwfrequency lower than Wbw. We 

must also keep in mind that we want to view the steady state response. 

Therefore, we will modify the axes in order to see the steady state 

response clearly (ignoring the transient response).  

 w= 0.3; 

 num = 1; 

 den = [1 0.5 1 ]; 

 t=0:0.1:100;  

 u = sin(w*t); 

 [y,x] = lsim(num,den,u,t); 

 plot(t,y,t,u) 

 axis([50,100,-2,2]) 



 

Note that the output (blue) tracks the input (purple) fairly well; it is 

perhaps a few degrees behind the input as expected.  

However, if we set the frequency of the input higher than the bandwidth higher than the bandwidth higher than the bandwidth higher than the bandwidth 

frequencyfrequencyfrequencyfrequency for the system, we get a very distorted response (with respect 

to the input):  

  

 w = 3; 

 num = 1; 

 den = [1 0.5 1 ]; 

 t=0:0.1:100;  

 u = sin(w*t); 

 [y,x] = lsim(num,den,u,t); 

 plot(t,y,t,u) 

 axis([90, 100, -1, 1]) 

 

Again, note that the magnitude is about 1/10 that of the input, as 

predicted, and that it is almost exactly out of phase (180 degrees behind) 

the input. Feel free to experiment and view the response for several 

different frequencies w, and see if they match the Bode plot.  

ClosedClosedClosedClosed----loop performanceloop performanceloop performanceloop performance    

In order to predict closed-loop performance from open-loop frequency 

response, we need to have several concepts clear:  



• The system must be stable in open loop if we are going to design 

via Bode plots.  

• If the gain cross over frequency is less than the phase cross over 

frequency(i.e. Wgc < Wpc), then the closed-loop system will be 

stable.  

• For second-order systems, the closed-loop damping ratio is 

approximately equal to the phase margin divided by 100 if the phase 

margin is between 0 and 60 deg. We can use this concept with caution 

if the phase margin is greater than 60 deg.  

• For second-order systems, a relationship between damping ratio, 

bandwidth frequency and settling time is given by an equation 

described on the bandwidth page.  

• A very rough estimate that you can use is that the bandwidth is 

approximately equal to the natural frequency.  

Let's use these concepts to design a controller for the following system:  

 

Where Gc(s) is the controller and G(s) is:  

  10 

   ---------- 

   1.25s + 1 

 

The design must meet the following specifications:  

• Zero steady state error.  

• Maximum overshoot must be less than 40%.  

• Settling time must be less than 2 secs.  

There are two ways of solving this problem: one is graphical and the other 

is numerical. Within Matlab, the graphical approach is best, so that is 

the approach we will use. First, let's look at the Bode plot. Create an 

m-file with the following code:  

num = 10; 

den = [1.25,1];  

bode(num, den) 



 
There are several several characteristics of the system that can be read 

directly from this Bode plot. First of all, we can see that the bandwidth 

frequency is around 10 rad/sec. Since the bandwidth frequency is roughly 

the same as the natural frequency (for a second order system of this type), 

the rise time is 1.8/BW=1.8/10=1.8 seconds. This is a rough estimate, so 

we will say the rise time is about 2 seconds.  

The phase margin for this system is approximately 95 degrees. This 

corresponds to a damping of PM/100=95/100=0.95. Plugging in this value 

into the equation relating overshoot and the damping ratio (or consulting 

a plot of this relation), we find that the damping ratio corresponding 

to this overshoot is approximately 1%. The system will be close to being 

overdamped.  

The last major point of interest is steady-state error. The steady-state 

error can be read directly off the Bode plot as well. The constant (Kp, 

Kv, or Ka) are located at the intersection of the low frequency asymptote 

with the w=1 line. Just extend the low frequency line to the w=1 line. 

The magnitude at this point is the constant. Since the Bode plot of this 

system is a horizontal line at low frequencies (slope = 0), we know this 

system is of type zero. Therefore, the intersection is easy to find. The 

gain is 20dB (magnitude 10). What this means is that the constant for the 

error function it 10. Click here to see the table of system types and error 

functions. The steady-state error is 1/(1+Kp)=1/(1+10)=0.091. If our 

system was type one instead of type zero, the constant for the steady-state 

error would be found in a manner similar to the following  



 

Let's check our predictions by looking at a step response plot. This can 

be done by adding the following two lines of code into the Matlab command 

window.  

[numc,denc] = cloop(num,den,-1); 

step(numc,denc) 

 

As you can see, our predictions were very good. The system has a rise time 

of about 2 seconds, is overdamped, and has a steady-state error of about 

9%. Now we need to choose a controller that will allow us to meet the design 

criteria. We choose a PI controller because it will yield zero steady state 

error for a step input. Also, the PI controller has a zero, which we can 

place. This gives us additional design flexibility to help us meet our 

criteria. Recall that a PI controller is given by:  

 

        K*(s+a) 

Gc(s) = ------- 



       s 

The first thing we need to find is the damping ratio corresponding to a 

percent overshoot of 40%. Plugging in this value into the equation 

relating overshoot and damping ratio (or consulting a plot of this 

relation), we find that the damping ratio corresponding to this overshoot 

is approximately 0.28. Therefore, our phase margin should be 

approximately 30 degrees. From our Ts*Wbw vs damping ratio plot, we find 

that Ts*Wbw ~ 21. We must have a bandwidth frequency greater than or equal 

to 12 if we want our settling time to be less than 1.75 seconds which meets 

the design specs.  

Now that we know our desired phase margin and bandwidth frequency, we can 

start our design. Remember that we are looking at the open-loop Bode plots. 

Therefore, our bandwidth frequency will be the frequency corresponding 

to a gain of approximately -7 dB.  

Let's see how the integrator portion of the PI or affects our response. 

Change your m-file to look like the following (this adds an integral term 

but no proportional term):  

num = [10]; 

den = [1.25, 1]; 

numPI = [1]; 

denPI = [1 0]; 

newnum = conv(num,numPI); 

newden = conv(den,denPI);  

bode(newnum, newden, logspace(0,2)) 

 



Our phase margin and bandwidth frequency are too small. We will add gain 

and phase with a zero. Let's place the zero at 1 for now and see what happens. 

Change your m-file to look like the following:  

num = [10]; 

den = [1.25, 1]; 

numPI = [1 1]; 

denPI = [1 0]; 

newnum = conv(num,numPI); 

newden = conv(den,denPI);  

bode(newnum, newden, logspace(0,2)) 

 

It turns out that the zero at 1 with a unit gain gives us a satisfactory 

answer. Our phase margin is greater than 60 degrees (even less overshoot 

than expected) and our bandwidth frequency is approximately 11 rad/s, 

which will give us a satisfactory response. Although satisfactory, the 

response is not quite as good as we would like. Therefore, let's try to 

get a higher bandwidth frequency without changing the phase margin too 

much. Let's try to increase the gain to 5 and see what happens .This will 

make the gain shift and the phase will remain the same.  

num = [10]; 

den = [1.25, 1]; 

numPI = 5*[1 1]; 

denPI = [1 0]; 

newnum = conv(num,numPI); 

newden = conv(den,denPI);  

bode(newnum, newden, logspace(0,2)) 



 

That looks really good. Let's look at our step response and verify our 

results. Add the following two lines to your m-file:  

[clnum,clden] =cloop(newnum,newden,-1); 

step(clnum,clden)  

 

As you can see, our response is better than we had hoped for. However, 

we are not always quite as lucky and usually have to play around with the 

gain and the position of the poles and/or zeros in order to achieve our 

design requirements.  

This tutorial is continued on the Nyquist page (the link is after the 

feedback form).  

Frequency Response II: The Nyquist DiagramFrequency Response II: The Nyquist DiagramFrequency Response II: The Nyquist DiagramFrequency Response II: The Nyquist Diagram    

 

The Nyquist DiagramThe Nyquist DiagramThe Nyquist DiagramThe Nyquist Diagram    



The Nyquist plot allows us to predict the stability and performance of 

a closed-loop system by observing its open-loop behavior. The Nyquist 

criterion can be used for design purposes regardless of open-loop 

stability (remember that the Bode design methods assume that the system 

is stable in open loop). Therefore, we use this criterion to determine 

closed-loop stability when the Bode plots display confusing information. 

The following movie will help you visualize the relationship between the 

Bode plot and the Nyquist diagram.  
 

Note: The Matlab Note: The Matlab Note: The Matlab Note: The Matlab nyquistnyquistnyquistnyquist command does not provide an adequate  command does not provide an adequate  command does not provide an adequate  command does not provide an adequate 

representation for systems that hrepresentation for systems that hrepresentation for systems that hrepresentation for systems that have openave openave openave open----loop poles in the jwloop poles in the jwloop poles in the jwloop poles in the jw----axis. axis. axis. axis. 

Therefore, we suggest that you copy the Therefore, we suggest that you copy the Therefore, we suggest that you copy the Therefore, we suggest that you copy the nyquist1.m nyquist1.m nyquist1.m nyquist1.m file as a new mfile as a new mfile as a new mfile as a new m----file. file. file. file. 

This mThis mThis mThis m----file creates more accurate Nyquist plots, since it take into file creates more accurate Nyquist plots, since it take into file creates more accurate Nyquist plots, since it take into file creates more accurate Nyquist plots, since it take into 

accouaccouaccouaccount poles and zeros on the jwnt poles and zeros on the jwnt poles and zeros on the jwnt poles and zeros on the jw----axis.axis.axis.axis.    

 

The Nyquist diagram is basically a plot of G(j* w) where G(s) is the 

open-loop transfer function and w is a vector of frequencies which 

encloses the entire right-half plane. In drawing the Nyquist diagram, both 

positive and negative frequencies (from zero to infinity) are taken into 

account. We will represent positive frequencies in red and negative 

frequencies in green. The frequency vector used in plotting the Nyquist 

diagram usually looks like this (if you can imagine the plot stretching 

out to infinity):  

 
In order to see how the frequency vector contributes to the Nyquist diagram 

more clearly, you can view our movie.  

However, if we have open-loop poles or zeros on the jw axis, G(s) will 

not be defined at those points, and we must loop around them when we are 

plotting the contour. Such a contour would look as follows:  



 

Please note that the contour loops around the pole on the jw axis. As we 

mentioned before, the Matlab nyquist command does not take poles or zeros 

on the jw axis into account and therefore produces an incorrect plot. To 

correct this, please download and use nyquist1.m. If we have a pole on 

the jw axis, we have to use nyquist1. If there are no poles or zeros on 

the jw-axis, or if we have pole-zero cancellation, we can use either the 

nyquist command or nyquist1.m.  

The Cauchy criterionThe Cauchy criterionThe Cauchy criterionThe Cauchy criterion    

The Cauchy criterion (from complex analysis) states that when taking a 

closed contour in the complex plane, and mapping it through a complex 

function G(s), the number of times that the plot of G(s) encircles the 

origin is equal to the number of zeros of G(s) enclosed by the frequency 

contour minus the number of poles of G(s) enclosed by the frequency contour. 

Encirclements of the origin are counted as positive if they are in the 

same direction as the original closed contour or negative if they are in 

the opposite direction.  

When studying feedback controls, we are not as interested in G(s) as in 

the closed-loop transfer function:  

G(s) 

--------- 

1 + G(s) 

If 1+ G(s) encircles the origin, then G(s) will enclose the point -1. Since 

we are interested in the closed-loop stability, we want to know if there 

are any closed-loop poles (zeros of 1 + G(s)) in the right-half plane. 

More details on how to determine this will come later.  

Therefore, the behavior of the Nyquist diagram around the -1 point in the 

real axis is very important; however, the axis on the standard nyquist 

diagram might make it hard to see what's happening around this point. To 

correct this, you can add the lnyquist1.m function to your files. The 



lnyquist1.m command plots the Nyquist diagram using a logarithmic scale 

and preserves the characteristics of the -1 point.  

To view a simple Nyquist plot using Matlab, we will define the following 

transfer function and view the Nyquist plot:  

0.5 

------- 

s - 0.5 

 nyquist (0.5,[1 -0.5]) 

 
Now we will look at the Nyquist diagram for the following transfer 

function:  

   s + 2 

   ----- 

   s^2 

Note that this function has a pole at the origin. We will see the difference 

between using the nyquist, nyquist1, and lnyquist1 commands with this 

particular function.  

 nyquist([1 2], [1 0 0]) 

 

 nyquist1([1 2], [1 0 0]) 



 

 lnyquist1([1 2], [1 0 0]) 

 

Note that the nyquist plot is not the correct one, the nyquist1 plot is 

correct, but it's hard to see what happens close to the -1 point, and the 

lnyquist1 plot is correct and has an appropriate scale.  

Closed Loop StabilityClosed Loop StabilityClosed Loop StabilityClosed Loop Stability    

Consider the negative feedback system:  

 

Remember from the Cauchy criterion that the number N of times that the 

plot of G(s)H(s) encircles -1 is equal to the number Z of zeros of 1 + 

G(s)H(s) enclosed by the frequency contour minus the number P of poles 

of 1 + G(s)H(s) enclosed by the frequency contour (N = Z - P). Keeping 

careful track of open- and closed-loop transfer functions, as well as 

numerators and denominators, you should convince yourself that:  

• the zeros of 1 + G(s)H(s) are the poles of the closed-loop transfer 

function  



• the poles of 1 + G(s)H(s) are the poles of the open-loop transfer 

function.  

The Nyquist criterion then states that:  

• P = the number of open-loop (unstable) poles of G(s)H(s)  

• N = the number of times the Nyquist diagram encircles -1  

• clockwise encirclements of -1 count as positive encirclements  

• counter-clockwise (or anti-clockwise) encirclements of -1 count as 

negative encirclements  

• Z = the number of right half-plane (positive, real) poles of the 

closed-loop system  

The important equation which relates these three quantities is:  

Z = P + NZ = P + NZ = P + NZ = P + N    

Note: This is only one convention for the NNote: This is only one convention for the NNote: This is only one convention for the NNote: This is only one convention for the Nyquist criterion. Another yquist criterion. Another yquist criterion. Another yquist criterion. Another 

convention states that a positive N counts the counterconvention states that a positive N counts the counterconvention states that a positive N counts the counterconvention states that a positive N counts the counter----clockwise or clockwise or clockwise or clockwise or 

antiantiantianti----clockwise encirclements of clockwise encirclements of clockwise encirclements of clockwise encirclements of ----1. The P and Z variables remain the same. 1. The P and Z variables remain the same. 1. The P and Z variables remain the same. 1. The P and Z variables remain the same. 

In this case the equation becomes Z = P In this case the equation becomes Z = P In this case the equation becomes Z = P In this case the equation becomes Z = P ---- N. Throughout these tutorials,  N. Throughout these tutorials,  N. Throughout these tutorials,  N. Throughout these tutorials, 

we will use a we will use a we will use a we will use a positive sign for clockwise encirclements. positive sign for clockwise encirclements. positive sign for clockwise encirclements. positive sign for clockwise encirclements.  

It is very important (and somewhat tricky) to learn how to count the number 

of times that the diagram encircles -1. Therefore, we will go into some 

detail to help you visualize this. You can view this movie as an example.  

Another way of looking at it is to imagine you are standing on top of the 

-1 point and are following the diagram from beginning to end. Now ask 

yourself: How many times did I turn my head a full 360 degrees? Again, 

if the motion was clockwise, N is positive, and if the motion is 

anti-clockwise, N is negative.  

Knowing the number of right-half plane (unstable) poles in open loop (P), 

and the number of encirclements of -1 made by the Nyquist diagram (N), 

we can determine the closed-loop stability of the system. If Z = P + N 

is a positive, nonzero number, the closed-loop system is unstable.  

We can also use the Nyquist diagram to find the range of gains for a 

closed-loop unity feedback system to be stable. The system we will test 

looks like this:  

 



where G(s) is :  

   s^2 + 10 s + 24 

   --------------- 

    s^2 - 8 s + 15 

This system has a gain K which can be varied in order to modify the response 

of the closed-loop system. However, we will see that we can only vary this 

gain within certain limits, since we have to make sure that our closed-loop 

system will be stable. This is what we will be looking for: the range of 

gains that will make this system stable in the closed loop.  

The first thing we need to do is find the number of positive real poles 

in our open-loop transfer function:  

   roots([1 -8 15])  

 

  ans = 
   5 
   3 
The poles of the open-loop transfer function are both positive. Therefore, 

we need two anti-clockwise (N = -2) encirclements of the Nyquist diagram 

in order to have a stable closed-loop system (Z = P + N). If the number 

of encirclements is less than two or the encirclements are not 

anti-clockwise, our system will be unstable.  

Let's look at our Nyquist diagram for a gain of 1:  

nyquist([ 1 10 24], [ 1 -8 15]) 

 

There are two anti-clockwise encirclements of -1. Therefore, the system 

is stable for a gain of 1. Now we will see how the system behaves if we 

increase the gain to 20:  

nyquist(20*[ 1 10 24], [ 1 -8 15]) 



 

The diagram expanded. Therefore, we know that the system will be stable 

no matter how much we increase the gain. However, if we decrease the gain, 

the diagram will contract and the system might become unstable. Let's see 

what happens for a gain of 0.5:  

nyquist(0.5*[ 1 10 24], [ 1 -8 15]) 

 

The system is now unstable. By trial and error we find that this system 

will become unstable for gains less than 0.80. We can verify our answers 

by zooming in on the Nyquist plots as well as by looking at the closed-loop 

steps responses for gains of 0.79, 0.80, and 0.81.  

If you are having trouble counting the Nyquist encirclements, we suggest 

you try using nyquist1. The number of anti-clockwise encirclements will 

be displayed on your screen (remember that this number actually represents 

negative N, i.e. if nyquist1 shows 2, N = -2) as well as the number of 

open and closed-loop positive real poles.  

Gain MarginGain MarginGain MarginGain Margin    

We already defined the gain margin as the change in open-loop gain 

expressed in decibels (dB), required at 180 degrees of phase shift to make 

the system unstable. Now we are going to find out where this comes from. 

First of all, let's say that we have a system that is stable if there are 

no Nyquist encirclements of -1, such as :  



50 ----------------------- s^3 + 9 s^2 + 30 s + 40  

 

 

Looking at the roots, we find that we have no open loop poles in the  

right half plane and therefore no closed-loop poles in the right half  

plane if there are no Nyquist encirclements of -1.  Now, how much can we  

vary the gain before this system becomes unstable in closed loop?  Let's  

look at the following figure: 

 

 

 

 

The open-loop system represented by this plot will become unstable in  

closed loop if the gain is increased past a certain boundary.  The  

negative real axis area between -1/a (defined as the point where the 180  

degree phase shift occurs...that is, where the diagram crosses the real  

axis) and -1 represents the amount of increase in gain that can be  

tolerated before closed-loop instability.   

 

 

If we think about it, we realize that if the gain is equal to a, the  

diagram will touch the -1 point: 

 



G(jw) = -1/a = a*G(jw) = a* -1/a => a*G(jw) = -1 

 

 

Therefore, we say that the gain margin is 'a' units.  However, we  

mentioned before that the gain margin is usually measured in decibels.   

Hence, the gain margin is : 

 

GM = 20*log10(a) [dB] 

 

 

We will now find the gain margin of the stable, open-loop transfer  

function  we viewed before.  Recall that the function is: 

50 ----------------------- s^3 + 9 s^2 + 30 s + 40  

 

 

and that the Nyquist diagram can be viewed by typing: 

nyquist (50, [1 9 30 40 ]) 

 

 

 

 

As we discussed before, all that we need to do to find the gain margin 

is  

find 'a', as defined in the preceding figure.  To do this, we need to find  

the point where there is exactly 180 degrees of phase shift.  This means  

that the transfer function at this point is real (has no imaginary part).   

The numerator is already real, so we just need to look at the denominator.   



When s = j*w, the only terms in the denominator that will have imaginary  

parts are those which are odd powers of s.  Therefore, for G(j*w) to be  

real, we must have: 

 

-j w^3 + 30 j w = 0 

 

which means w=0 (this is the rightmost point in the Nyquist diagram)  

or w=sqrt(30).  We can then find the value of G(j*w) at this point using  

polyval: 

 

polyval(50,j*w)/polyval([1 9 30 40],j*w) 

 

Our answer is: -0.2174 + 0i.  The imaginary part is zero, so we know that  

our answer is correct.  We can also verify by looking at the Nyquist plot  

again.  The real part also makes sense.  Now  we can 

proceed to find the gain margin. 

 

 

We found that the 180 degrees phase shift occurs at -0.2174 + 0i.  This  

point was previously defined as -1/a.  Therefore, we now have 'a', which  

is the gain margin.  However, we need to express the gain margin in  

decibels,   

 

-1/a = -0.2174 => a = 4.6 => GM = 20*log10( 4.6) = 13.26 dB  

 

 

We now have our gain margin.  Let's see how accurate it is by using a gain  

of a = 4.6 and zooming in on the Nyquist plot: 

a = 4.6 

nyquist(a*50,[1 9 30 40]) 

 

 



 

 

The plot appears to go right through the -1 point. We will now verify the  

accuracy of our results by viewing the zoomed Nyquist diagrams and step  

responses for gains of 4.5,  4.6, and  4.7. 

 

 

 Phase Margin Phase Margin Phase Margin Phase Margin    

 

We have already discussed the importance of the phase margin.  Therefore,  

we will only talk about where this concept comes from.  We have defined  

the phase margin as the change in open-loop phase shift required at unity  

gain to make a closed-loop system unstable.  Let's look at the following  

graphical definition of this concept to get a better idea of what we are  

talking about. 

  

 

 

 

Let's analyze the previous plot and think  about what is happening.  From  

our previous example we know that this particular system  will be unstable  



in closed loop if the Nyquist diagram encircles the -1 point.  However, 

we  

must also realize that if the diagram is shifted by theta degrees, it will  

then touch the -1 point at the negative real axis, making the system  

marginally stable in closed loop.  Therefore, the angle required to make  

this system marginally stable in closed loop is called the phase margin  

(measured in degrees).  In order to find the point we measure this angle  

from, we draw a circle with radius of 1, find the point in the Nyquist  

diagram with a magnitude of 1 (gain of zero dB), and measure the phase  

shift needed for this point to be at an angle of 180 deg.   

 

 

 

 

三． 实验步骤 

选择如下示例，按步骤进行试验： 

Example: Solution to the Cruise 

Control Problem Using Frequency 

Response 

The open-loop transfer function for this problem is :  

 



• m=1000  

• b=50  

• U(s)=10  

• Y(s)=Velocity output  

The design criteria are:  

Rise time < 5 sec 

Overshoot < 10% 

Steady state error < 2% 

To see the original problem set, see the Cruise Control Modeling page.  

Bode plot and openBode plot and openBode plot and openBode plot and open----loop responseloop responseloop responseloop response    

The first step in solving this problem using frequency response is to 

determine what open-loop transfer function to use. Just like for the 

Root-Locus design method, we will only use a proportional controller to 

solve the problem. The block diagram and the open-loop transfer function 

are shown below.  

 

 

In order to use a Bode plot, the open-loop response must be stable. Let 

Kp equals 1 for now and see how the open-loop response looks like. Create 

an new m-file and enter the following commands.  

 

m = 1000; 

b = 50; 

u = 500; 

Kp=1; 

 

numo=[Kp]; 

deno=[m b]; 

 

step (u*numo,deno) 

Running this m-file in the Matlab command window should give you the 

following plot.  



 

As you can see, the open-loop system is stable; thus, we can go ahead and 

generate the Bode plot. Change the above m-file by deleting step command 

and add in the following command.  

 

bode(numo,deno)   

Running this new m-file should give you the following Bode plot.  

 

Proportional controllerProportional controllerProportional controllerProportional controller    

Let's see what system characteristics we can determine from the above Bode 

plot. Recall from the Root-Locus Tutorial, the bandwidth frequency (BW) 

(the frequency at the gain M(dB)=-6~-7.5dB) is roughly equals to the 

natural frequency (Wn). Using the equation,  



 
the rise time (Tr) for our system can be determined to be extremely long 

since the gain shown above do not reach -6~-7.5dB. Moreover, we see from 

the Root-Locus Tutorial that the damping ratio is roughly equals to the 

phase margin (in degrees) divided by 100.  

 

Since our phase margin is approximately 155 degrees, the damping ratio 

will be 1.55. Thus, we know that the system is overdamped (since the 

damping ratio is greater than 1). Finally, the steady-state error can be 

found from the following equation:  

 

For our system, since the low frequency gain M(dB) is approximately -35dB, 

the steady-state error should be 98%. We can confirm these by generating 

a closed-loop step response.  

 

In terms of the Bode plot, if we can shift the gain upward so that both 

the bandwidth frequency and the low frequency gain increase, then both 

the rise time and the steady-state error will improve. We can do that by 

increasing the proportional gain (Kp). Let's increase the proportional 

gain (Kp) to ,say, 100 and see what happens. Change the m-file to the 

following.  



 

m = 1000; 

b = 50; 

u = 10; 

Kp=100; 

 

numo=[Kp]; 

deno=[m b]; 

 

bode(numo,deno) 

Running this m-file in the Matlab command window should give you the 

following Bode plot.  

 

Now, the low frequency gain is about 6dB (magnitude 2) which predicts the 

steady-state error of 33%. The bandwidth frequency is about 0.1 rad/sec 

so that the rise time should be around 18 seconds. Let's take a look at 

the closed-loop step response and confirm these.  



 

As we predicted, both the steady-state error and the rise time have 

improved. Let's increase the proportional gain even higher and see what 

happens. Change the m-file to the following and rerun it. You should get 

the following Bode plot.  

 

m = 1000; 

b = 50; 

u = 10; 

Kp=100; 

 

numo=[Kp/b]; 

deno=[m/b 1]; 

 

bode(numo,deno) 

 



Now, the low frequency gain is approximately 20dB (magnitude 10) that 

predicts the steady-state error of 9%, and the bandwidth frequency is 

around 0.6 that predicts the rise time of 3 sec (within the desired value)(within the desired value)(within the desired value)(within the desired value). 

Thus, both the steady-state error and the rise time should have been 

improved. Again, let's confirm these by generating the closed-loop step 

response.  

 

If you noticed, the steady-state error will eventually reach the desired 

value by increasing the proportional gain even higher. However, by the 

time the steady-state error reaches the desired value, the rise time 

becomes too fast (unrealistic for the real physical system). Thus, let's 

leave the Kp as it is and implement a lag controller to handle the 

steady-state error problem.  

Lag controllerLag controllerLag controllerLag controller    

If you take a look at the "Lag or Phase-Lag Compensator using Frequency 

Response"section of the Lead and Lag Compensator page, the lag controller 

adds gain at the low freqencies while keeping the bandwidth frequency at 

the same place. This is actually what we need: Larger low frequency gain 

to reduce the steady-state error and keep the same bandwidth frequency 

to maintain the desired rise time. The transfer function of the lag 

controller is shown below.  

 

Now, we need to choose a value for aaaa and TTTT. Recall from the "Lag or Phase-Lag 

Compensator using Frequency Response" page, the steady-state error will 



decrease by a factor of aaaa. The value TTTT should be chosen so that two corner 

frequencies will not be placed close together because transient response 

gets worse. So let aaaa equals 0.05 and TTTT equals 700 and see what happens. 

Copy the following m-file and run it in the Matlab command window. You 

should see the following Bode plot.  

 

 

m = 1000; 

b = 50; 

u = 10; 

Kp=600; 

 

numo=[Kp/b]; 

deno=[m/b 1]; 

 

a = 0.05; 

T=700; 

numlag = [a*T 1]; 

denlag = a*[T 1]; 

newnum = conv(numo,numlag); 

newden = conv(deno,denlag); 

 

bode(newnum,newden) 

 

figure 

[numc,denc]=cloop(newnum,newden); 

step (u*numc,denc) 

 



Since the low frequency gain has increased while the bandwidth frequency 

stayed the same, the steady-state error should be reduced and the rise 

time should stay the same. Let's confirm this by generating a closed-loop 

step response.  

 

It may be hard to see, but there should be a green, dotted line across 

just below 10. This line shows the steady-state value of the step, and 

we can see that the steady-state error has been met. However, the settling 

time is too long. To fix this, raise the proportional gain to Kp=1500. 

This gain was chosen from trial-and-error that will not be described here 

in the interest of length. With this change made, the following Bode and 

step response plots can be generated.  

 



 

As you can see, the overshoot is in fact zero, the steady state error is 

close to zero, the rise time is about 2 seconds, and the settling time 

is less than 3.5 seconds. The system has now met all of the design 

requirements. No more iteration is needed.  

四．实验报告 

1．综述频率响应法控制的理论原理； 

2．画出示例程序中频率响应法控制的曲线； 

3．选择其它的示例实现利用频率响应控制。 

 


