
实验四  利用根轨迹法控制的MATLAB实

现  

一． 实验目的 

1． 熟悉并掌握 MATLAB 的工作环境。 

2． 了解根轨迹控制技术的基本理论。 

3． 在 MATLAB 工作环境下，选择适当的例子，实现根轨迹法控制，讨

论控制效果。 

二． 实验内容 

ClosedClosedClosedClosed----Loop PolesLoop PolesLoop PolesLoop Poles    

The root locus of an (open-loop) transfer function H(s) is a plot of the 

locations (locus) of all possible closed loop poles with proportional gain 

k and unity feedback:  

 

The closed-loop transfer function is:  

 

 

and thus the poles of the closed loop system are values of s such that 

1 + K H(s) = 01 + K H(s) = 01 + K H(s) = 01 + K H(s) = 0.  

If we write H(s) = b(s)/a(s) H(s) = b(s)/a(s) H(s) = b(s)/a(s) H(s) = b(s)/a(s), then this equation has the form:  



 

Let n = order of a(s) and m = order of b(s) [the order of a polynomial 

is the highest power of s that appears in it].  

We will consider all positive values of k. In the limit as k -> 0, the 

poles of the closed-loop system are a(s) = 0 or the poles of H(s). In the 

limit as k -> infinity, the poles of the closed-loop system are b(s) = 

0 or the zeros of H(s).  

No matter what we pick k to be, the closedthe closedthe closedthe closed----loop system must always have loop system must always have loop system must always have loop system must always have 

n polesn polesn polesn poles, where n is the number of poles of H(s). The root locus must The root locus must The root locus must The root locus must have have have have 

n branchesn branchesn branchesn branches, each branch starts at a pole of H(s) and goes to a zero of 

H(s). If H(s) has more poles than zeros (as is often the case), m < n and 

we say that H(s) has zeros at infinityzeros at infinityzeros at infinityzeros at infinity. In this case, the limit of H(s) 

as s -> infinity is zero. The number of zeros at infinity is n-m, the number 

of poles minus the number of zeros, and is the number of branches of the 

root locus that go to infinity (asymptotes).  

Since the root locus is actually the locations of all possible closed loop 

poles, from the root locus we can select a gain such that our closed-loop 

system will perform the way we want. If any of the selected poles are on 

the right half plane, the closed-loop system will be unstable. The poles 

that are closest to the imaginary axis have the greatest influence on the 

closed-loop response, so even though the system has three or four poles, 

it may still act like a second or even first order system depending on 

the location(s) of the dominant pole(s).  

Plotting the root locus of a transfer functionPlotting the root locus of a transfer functionPlotting the root locus of a transfer functionPlotting the root locus of a transfer function    

Consider an open loop system which has a transfer function of  

 

 

How do we design a feed-back controller for the system by using the root 

locus method? Say our design criteria are 5% overshoot and 1 second rise 

time. Make a Matlab file called rl.m. Enter the transfer function, and 

the command to plot the root locus:  

 

num=[1 7]; 



den=conv(conv([1 0],[1 5]),conv([1 15],[1 20])); 

rlocus(num,den) 

axis([-22 3 -15 15])  

 

ChoosingChoosingChoosingChoosing a value of K from the root locus a value of K from the root locus a value of K from the root locus a value of K from the root locus    

The plot above shows all possible closed-loop pole locations for a pure 

proportional controller. Obviously not all of those closed-loop poles 

will satisfy our design criteria. To determine what part of the locus is 

acceptable, we can use the command sgrid(Zeta,Wn) to plot lines of 

constant damping ratio and natural frequency. Its two arguments are the 

damping ratio (Zeta) and natural frequency (Wn) [these may be vectors if 

you want to look at a range of acceptable values]. In our problem, we need 

an overshoot less than 5% (which means a damping ratio Zeta of greater 

than 0.7) and a rise time of 1 second (which means a natural frequency 

Wn greater than 1.8). Enter in the Matlab command window:  

 

zeta=0.7; 

Wn=1.8; 

sgrid(zeta, Wn) 



 

On the plot above, the two white dotted lines at about a 45 degree angle 

indicate pole locations with Zeta = 0.7; in between these lines, the poles 

will have Zeta > 0.7 and outside of the lines Zeta < 0.7. The semicircle 

indicates pole locations with a natural frequency Wn = 1.8; inside the 

circle, Wn < 1.8 and outside the circle Wn > 1.8.  

Going back to our problem, to make the overshoot less than 5%, the poles 

have to be in between the two white dotted lines, and to make the rise 

time shorter than 1 second, the poles have to be outside of the white dotted 

semicircle. So now we know only the part of the locus outside of the 

semicircle and in between the two lines are acceptable. All the poles in 

this location are in the left-half plane, so the closed-loop system will 

be stable.  

From the plot above we see that there is part of the root locus inside 

the desired region. So in this case we need only a proportional controller 

to move the poles to the desired region. You can use rlocfind command in 

Matlab to choose the desired poles on the locus:  

 

[kd,poles] = rlocfind(num,den)  

Click on the plot the point where you want the closed-loop pole to be. 

You may want to select the points indicated in the plot below to satisfy 

the design criteria.  



 

Note that since the root locus may has more than one branch, when you select 

a pole, you may want to find out where the other pole (poles) are. Remember 

they will affect the response too. From the plot above we see that all 

the poles selected (all the white "+") are at reasonable positions. We 

can go ahead and use the chosen kd as our proportional controller.  

ClosedClosedClosedClosed----loop responseloop responseloop responseloop response    

In order to find the step response, you need to know the closed-loop 

transfer function. You could compute this using the rules of block 

diagrams, or let Matlab do it for you:  

 

[numCL, denCL] = cloop((kd)*num, den) 

The two arguments to the function cloop are the numerator and denominator 

of the open-loop system. You need to include the proportional gain that 

you have chosen. Unity feedback is assumed.  

If you have a non-unity feedback situation, look at the help file 

for the Matlab function feedback, which can find the closed-loop 

transfer function with a gain in the feedback loop.  

Check out the step response of your closed-loop system:  

 

step(numCL,denCL) 



 

As we expected, this response has an overshoot less than 5% and a rise 

time less than 1 second.  

三． 实验步骤 

选择如下示例，按步骤进行试验： 

Example: Solution to the Cruise 

Control Problem Using Root Locus 

Method  

Proportional Controller  

Lag controller  

The open-loop transfer function for this problem is:  

 

where  



• m=1000  

• b=50  

• U(s)=10  

• Y(s)=velocity output  

The design criteria are:  

Rise time < 5 sec 

Overshoot < 10% 

Steady state error < 2% 

To see the original problem setup, refer to Cruise Control Modeling page.  

Proportional controllerProportional controllerProportional controllerProportional controller    

Recall from the Root-Locus Tutorial page, the root-locus plot shows the 

locations of all possible closed-loop poles when a single gainsingle gainsingle gainsingle gain is varied 

from zero to infinity. Thus, only a proportional controller (Kp) will be 

considered to solve this problem. Then, the closed-loop transfer function 

becomes:  

 

Also, from the Root-Locus Tutorial, we know that the Matlab command called 

sgrid should be used to find an acceptable region of the root-locus plot. 

To use the sgrid, both the damping ratio (zeta) and the natural frequency 

(Wn) need to be determined first. The following two equations will be used 

to find the damping ratio and the natural frequency:  

 

where  

Wn=Natural frequency 

zeta=Damping ratio 

Tr=Rise time  

Mp=Maximum overshoot  



One of our design criteria is to have a rise time of less than 5 seconds. 

From the first equation, we see that the natural frequency must be greater 

than 0.36. Also using the second equation, we see that the damping ratio 

must be greater than 0.6, since the maximum overshoot must be less than 

10%.  

Now, we are ready to generate a root-locus plot and use the sgrid to find 

an acceptable region on the root-locus. Create an new m-file and enter 

the following commands.  

  

hold off; 

m = 1000; 

b = 50; 

u = 10; 

numo=[1]; 

deno=[m b]; 

 

figure 

hold; 

axis([-0.6 0 -0.6 0.6]); 

rlocus (numo,deno)   

sgrid(0.6, 0.36) 

[Kp, poles]=rlocfind(numo,deno)  

 

figure 

hold; 

numc=[Kp]; 

denc=[m (b+Kp)]; 

t=0:0.1:20; 

step (u*numc,denc,t)   

axis ([0 20 0 10]) 

Running this m-file should give you the following root-locus plot.  



 

The two dotted lines in an angle indicate the locations of constant damping 

ratio (zeta=0.6); the damping ratio is greater than 0.6 in between these 

lines and less than 0.6 outside the lines. The semi-ellipse indicates the 

locations of constant natural frequency (Wn=0.36); the natural frequency 

is greater than 0.36 outside the semi-ellipse, and smaller than 0.36 

inside.  

If you look at the Matlab command window, you should see a prompt asking 

you to pick a point on the root-locus plot. Since you want to pick a point 

in between dotted lines (zeta>0.6) and outside the semi-ellipse (Wn>0.36), 

click on the real axis just outside the semi-ellipse (around -0.4).  

You should see the gain value (Kp) and pole locations in the Matlab command 

window. Also you should see the closed-loop step response similar to the 

one shown below.  



 

With the specified gain Kp (the one you just picked), the rise time and 

the overshoot criteria have been met; however, the steady-state error of 

more than 10% remained.  

Lag controllerLag controllerLag controllerLag controller    

To reduce the steady-state error, a lag controller will be added to the 

system. The transfer function of the lag controller is:  

 

The open-loop transfer function (not including Kp) now becomes:  

 

Finally, the closed-loop transfer function becomes:  

 

If you read the "Lag or Phase-Lag Compensator using Root-Locus" section 

in Lead and Lag Compensator page, the pole and the zero of a lag controller 

need to be placed close together. Also, it states that the steady-state 



error will be reduce by a factor of Zo/Po. For these reasons, let Zo equals 

-0.3 and Po equals -0.03.  

Create an new m-file, and enter the following commands.  

hold off; 

m = 1000; 

b = 50; 

u = 10; 

Zo=0.3; 

Po=0.03; 

numo=[1 Zo]; 

deno=[m b+m*Po b*Po]; 

 

figure 

hold; 

axis ([-0.6 0 -0.4 0.4]) 

rlocus(numo,deno) 

sgrid(0.6,0.36) 

[Kp, poles]=rlocfind(numo,deno) 

 

figure 

t=0:0.1:20; 

numc=[Kp Kp*Zo]; 

denc=[m b+m*Po+Kp b*Po+Kp*Zo]; 

axis ([0 20 0 12]) 

step (u*numc,denc,t) 

Running this m-file should give you the root-locus plot similar to the 

following:  



 

In the Matlab command window, you should see the prompt asking you to 

select a point on the root-locus plot. Once again, click on the real axis 

around -0.4. You should have the following response.  

 

As you can see, the steady-state error has been reduced to near zero. 

Slight overshoot is a result of the zero added in the lag controller.  

Now all of the design criteria have been met and no further iterations 

will be needed.  

 



四．实验报告 

1．综述根轨迹控制的理论原理； 

2．画出示例程序中根轨迹控制结构图，并简述控制效果； 

3．选择其它的示例实现根轨迹控制。 

 


